PHASE I
ENVIRONMENTAL SITE ASSESSMENT
BRANDYWINE APARTMENTS
500 ROCKINGHAM DRIVE
RICHARDSON, DALLAS COUNTY, TEXAS

D3G PROJECT NUMBER: 2019-1855

FINAL REPORT ISSUE DATE: FEBRUARY 18, 2020

INSPECTION DATE: DECEMBER 4, 2019

PREPARED FOR:
NATIONAL CHURCH RESIDENCES
2335 NORTH BANK DRIVE
COLUMBUS, OHIO 43220

Steve Myers, BPI-MFBA
Site Assessor

Elizabeth Fulmer
Project Manager

Joe Fuscaldo
Environmental Professional

Signature

Signature

Signature

Corporate Headquarters ● 201 Wylderose Drive ● Midlothian, Virginia 23113
804.358.2020 ● Fax 804.897.6404 ● www.D3G.COM
Providing nationwide service to protect your investments
EXECUTIVE PROPERTY DESCRIPTION

Property: Brandywine Apartments
500 Rockingham Drive
Richardson, Dallas County, Texas

Site Description: The subject property consists of five (5) single-story age-restricted apartment structures and one (1) single-story community building constructed in 1980. The subject property structures contain a total of fifty (50) residential dwelling units and are situated on approximately 3.280 acres of land. The subject property contains a gross building area of approximately 37,680 square feet. Located within the community building are laundry facilities, a leasing office, a community room and kitchen, and maintenance areas. Exterior property improvements include a community garden, landscaped regions, and asphalt parking areas. The subject property is serviced by electricity and municipally supplied water and sewer. The subject property is seeking funding through the Texas Department of Housing and Community Affairs (TDHCA) with no additional HOME, NSP, TCAP, NHTF, or 811 PRA funding.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Purpose</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>Detailed Scope of Services</td>
<td>3</td>
</tr>
<tr>
<td>2.3</td>
<td>Significant Assumptions</td>
<td>3</td>
</tr>
<tr>
<td>2.4</td>
<td>Limitations and Exceptions</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>Special Terms and Conditions</td>
<td>4</td>
</tr>
<tr>
<td>2.6</td>
<td>User Reliance</td>
<td>5</td>
</tr>
<tr>
<td>3.0</td>
<td>SUBJECT PROPERTY DESCRIPTION</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Location and Legal Description</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>Site and Vicinity General Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>Current Use of the Subject Property</td>
<td>5</td>
</tr>
<tr>
<td>3.4</td>
<td>Description of Structures, Roads, and Other Improvements</td>
<td>6</td>
</tr>
<tr>
<td>3.5</td>
<td>Current Uses of Adjoining Properties</td>
<td>6</td>
</tr>
<tr>
<td>4.0</td>
<td>USER PROVIDED INFORMATION</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Title Records</td>
<td>7</td>
</tr>
<tr>
<td>4.2</td>
<td>Environmental Liens or Activity and Use Limitations (AULs)</td>
<td>7</td>
</tr>
<tr>
<td>4.3</td>
<td>Specialized Knowledge</td>
<td>7</td>
</tr>
<tr>
<td>4.4</td>
<td>Commonly Known or Reasonably Ascertainable Information</td>
<td>7</td>
</tr>
<tr>
<td>4.5</td>
<td>Valuation Reduction for Environmental Issues</td>
<td>8</td>
</tr>
<tr>
<td>4.6</td>
<td>Owner, Property Manager, and Occupant Information</td>
<td>8</td>
</tr>
<tr>
<td>4.7</td>
<td>Reason for Performing Phase I ESA</td>
<td>8</td>
</tr>
<tr>
<td>4.8</td>
<td>Previous Environmental Reports</td>
<td>8</td>
</tr>
<tr>
<td>5.0</td>
<td>RECORDS REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>5.1</td>
<td>Standard Environmental Record Sources</td>
<td>9</td>
</tr>
<tr>
<td>5.2</td>
<td>Additional Environmental Record Sources</td>
<td>12</td>
</tr>
<tr>
<td>5.3</td>
<td>Physical Setting Sources</td>
<td>13</td>
</tr>
<tr>
<td>5.4</td>
<td>Historical Use Information on the Subject Property</td>
<td>13</td>
</tr>
<tr>
<td>5.5</td>
<td>Historical Use Information on Adjoining Properties</td>
<td>14</td>
</tr>
<tr>
<td>5.6</td>
<td>Tier 1 Vapor Encroachment Screening</td>
<td>15</td>
</tr>
<tr>
<td>6.0</td>
<td>SITE RECONNAISSANCE</td>
<td>20</td>
</tr>
<tr>
<td>6.1</td>
<td>Methodology and Limiting Conditions</td>
<td>20</td>
</tr>
</tbody>
</table>
6.2 General Site Setting ... 20
6.3 Exterior Observations ... 20
6.4 Interior Observations ... 21
7.0 INTERVIEWS ... 21
7.1 Prospective Landowner/User Questionnaire 21
7.2 Current Landowner Questionnaire .. 21
7.3 Previous Landowner Questionnaire .. 22
7.4 Key Site Manager Questionnaire ... 22
7.5 Occupant Questionnaire .. 22
7.6 Local Agencies Contacted ... 22
7.7 Additional Persons Interviewed ... 22
8.0 INVESTIGATION FOR NON-SCOPE CONSIDERATIONS 23
8.1 Asbestos-Containing Materials ... 23
8.2 Lead-Based Paint ... 23
8.3 Radon Gas ... 23
8.4 Flood Zone .. 23
8.5 Wetlands ... 23
8.6 Lead in Drinking Water ... 24
8.7 Noise Analysis/Airport Hazards ... 24
8.8 Nuisances and Hazards .. 24
9.0 FINDINGS .. 25
10.0 OPINION .. 25
11.0 CONCLUSIONS .. 26
12.0 DEVIATIONS ... 26
13.0 ADDITIONAL SERVICES ... 27
14.0 REFERENCE MATERIALS .. 27
15.0 SIGNATURE OF ENVIRONMENTAL PERSONNEL 28
16.0 QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS 29
17.0 APPENDICES ... 30
EXECUTIVE SUMMARY

The following table summarizes the conclusions and opinions representing Dominion Due Diligence Group’s (D3G’s) best professional judgment based on information accessed during the course of this investigation. D3G performed a Phase I Environmental Site Assessment that included subject property observations of the Brandywine Apartments on December 4, 2019 located at 500 Rockingham Drive in Richardson, Dallas County, Texas (subject property).

<table>
<thead>
<tr>
<th>EVALUATED CONDITIONS</th>
<th>SECTION REFERENCE</th>
<th>ACCEPTABLE</th>
<th>RECOMMENDED RESPONSE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD ENVIRONMENTAL RECORDS REVIEW</td>
<td>5.1</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>UNREGULATED UNDERGROUND STORAGE TANK(S) (UST)</td>
<td>6.3</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>PAST INDUSTRIAL/DETREMITAL OPERATIONS</td>
<td>5.4, 5.5</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>VAPOR ENCROACHMENT CONDITION</td>
<td>5.6</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>STORED HAZARDOUS MATERIALS</td>
<td>6.3, 6.4</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>POLYCHLORINATED BIPHENYLS (PCBS)</td>
<td>6.3, 6.4</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>ABOVEGROUND STORAGE TANK(S) (AST)</td>
<td>6.3, 6.4</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>DUMPING</td>
<td>6.3</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>HAZARDOUS RUN-OFF</td>
<td>6.3</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>ASBESTOS-CONTAINING MATERIALS</td>
<td>8.1</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>LEAD-BASED PAINT</td>
<td>8.2</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>RADON GAS</td>
<td>8.3</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>FLOOD ZONE</td>
<td>8.4</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>WETLANDS</td>
<td>8.5</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>LEAD IN DRINKING WATER</td>
<td>8.6</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>NOISE ANALYSIS/AIRPORT HAZARDS</td>
<td>8.7</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>NUISANCES AND HAZARDS</td>
<td>8.8</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td>NA</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

(√) = there are no environmental concerns associated with the evaluated condition.

D3G has performed a Phase I ESA at the subject property. Based on the conclusions, D3G recommends no further investigation.
2.0 INTRODUCTION

2.1 Purpose

National Church Residences contracted Dominion Due Diligence Group (D3G) to perform a Phase I Environmental Site Assessment (ESA) of the Brandywine Apartments located at 500 Rockingham Drive in Richardson, Dallas County, Texas (subject property). As such, National Church Residences is considered the “User” of this report as defined under ASTM Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process Designation: E 1527-13 (ASTM E 1527 13). In addition, Texas Department of Housing and Community Affairs (TDHCA) is an authorized user of this Phase I ESA.

The purpose of the Phase I ESA is to provide all appropriate inquiry into the previous ownership and uses of the subject property and to identify recognized environmental conditions (RECs), which are the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment. In addition, the Phase I ESA includes the identification of controlled recognized environmental conditions (CRECs), historical recognized environmental conditions (HRECs), and de minimis conditions. CRECs are RECs resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls). HRECs involve a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls. De minimis conditions generally do not present a threat to human health or the environment and generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. For the purposes of this reporting, D3G defines “environmental concerns” as de minimis conditions and non-scope considerations for which further action is recommended.

In addition, this report assesses non-scope considerations as directed by the client. Factual information regarding on-site business operations, conditions, and historical data provided to D3G is assumed to be correct and complete.

This investigation was conducted in accordance with ASTM E 1527-13 published guidelines, 40 CFR Part 312, Standards and Practices for All Appropriate Inquiries: Final Rule, accepted Phase I ESA industry standards, 2020 TDHCA environmental protocols, and Texas Administrative Code – Title 10, Rule §11.305 Environmental Site Assessment Rules and Guidelines. D3G has reviewed and understands the above referenced guidelines.
2.2 Detailed Scope of Services

The ASTM E 1527-13 scope of work for this Phase I ESA consisted of the following:

- site reconnaissance of the subject property and a visual survey of the adjacent properties to evaluate the potential for RECs;
- review of applicable and reasonably ascertainable information about the subject property, including aerial photography, USGS topographic map, state and federal databases, Sanborn maps, property assessment information and other governmental sources that are publicly available, practically reviewable, and obtainable within reasonable time and cost constraints;
- interviews with selected individuals knowledgeable about the subject property and vicinity properties; and
- if provided, a review of existing environmental reports documenting previous assessment and remediation efforts completed at the subject property.

D3G also evaluated the following ASTM Non-Scope Considerations, such as Tier 1 Vapor Encroachment Screening in general compliance with ASTM Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions Designation: E 2600-15, as well as asbestos-containing materials, lead-based paint, radon gas, floodplain hazards, wetlands, lead in drinking water, noise, airport hazards, and nuisances and hazards in accordance with 2020 TDHCA environmental protocols and Texas Administrative Code – Title 10, Rule §11.305 Environmental Site Assessment Rules and Guidelines.

This Phase I ESA did not include the collection or analysis of soil or groundwater samples.

2.3 Significant Assumptions

Factual information regarding on-site business operations, conditions, and historical data provided to D3G is assumed to be correct and complete. D3G assumes no responsibility for hidden or latent conditions or misrepresentation by the property owner, its representatives, public information officials or any authority consulted in connection with the compilation of this report.

D3G assumes that all information provided by Environmental Data Resources, Inc. (EDR) regarding the regulatory status of facilities within the approximate minimum search distance is complete, accurate and current.
2.4 Limitations and Exceptions

D3G encountered the following limitations, exceptions, and/or data gaps during the performance of this Phase I ESA:

- Our on-site observations pertain only to specific locations at specific times on specific dates. This report and conclusions herein are based upon data collection between November 7, 2019 and December 23, 2019. Our observations and conclusions do not reflect variations in conditions that may exist, in unexplored areas of the site, or at times other than those represented by our observations.

- In order for the prospective purchaser to claim protection from CERCLA liability as an innocent landowner, bona fide prospective purchaser, or contiguous property owner, the acquisition of the subject property should be completed within 180 days after the subject property inspection date.

- According to 40 CFR Part 312, Standards and Practices for All Appropriate Inquiries: Final Rule, CERCLA liability rests with the owner or operator of a property and not with an environmental professional hired by the prospective landowner and who is not involved with the ownership or operation of the property.

- This report meets the requirements set forth in 40 CFR Part 312 Standards and Practices for All Appropriate Inquiries: Final Rule. However, in order to qualify for certain landowner liability protections under CERCLA, Bona Fide Prospective Purchasers, Contiguous Property Owners, and/or Innocent Landowners must meet additional requirements in 101(35)(B) of CERCLA (42 U.S.C. 9601(35)) of the Federal Register.

- No significant data gaps in historical information were identified that would impact D3G’s ability to identify RECs. Collectively the sources considered and consulted during the course of this assessment allowed D3G to adequately determine the subject property history. Therefore, these data gaps are not considered to be significant.

- Historical information was not reasonably ascertainable to the subject property’s first developed use. D3G obtained historical information to 1942 at which time the subject property was developed with agricultural land. However, subject property observations did not indicate that previous agricultural activities have negatively impacted the environmental condition of the subject property. Therefore, this limitation is not significant.

- At the time this report was issued, D3G had not received the completed previous landowner questionnaire.

2.5 Special Terms and Conditions

This investigation was conducted in accordance with ASTM E 1527-13 published guidelines and 40 CFR Part 312, Standards and Practices for All Appropriate Inquiries: Final Rule. In addition, Non-Scope items are addressed in accordance with 2020 TDHCA environmental protocols and Texas Administrative Code – Title 10, Rule §11.305 Environmental Site Assessment Rules and Guidelines. The preparer has read and understood Rule §11.305 Environmental Site Assessment Rules and Guidelines.
2.6 User Reliance

This report has been prepared for, and can be relied upon by the Client, National Church Residences, and TDHCA. This report is not to be relied upon or reproduced, either in whole or in part, without written consent from D3G. All persons who have a property interest in this report hereby acknowledge that the Department may publish the full report on the Department’s website, release the report in response to a request for public information and make other use of the report as authorized by law.

3.0 SUBJECT PROPERTY DESCRIPTION

3.1 Location and Legal Description

The subject property is located at 500 Rockingham Drive in Richardson, Dallas County, Texas and contains a total of approximately 3.280 acres of land. The subject property is situated at an elevation of approximately 645 feet above mean sea level and is located at Latitude, 32.965458 and Longitude, -96.735802.

<table>
<thead>
<tr>
<th>SUBJECT PROPERTY MUNICIPAL IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMERCIAL ACCOUNT NUMBER</td>
</tr>
<tr>
<td>42103950010010000</td>
</tr>
</tbody>
</table>

SOURCE - Dallas County assessment documents

A copy of the tax card and a map illustrating the legal property boundary is included in Appendix A of this report.

3.2 Site and Vicinity General Characteristics

The subject property is located in an area of residential and light commercial development and undeveloped land.

3.3 Current Use of the Subject Property

The subject property is currently utilized as an age-restricted complex.
3.4 Description of Structures, Roads, and Other Improvements

The following section describes general conditions and features as noted during D3G’s inspection:

<table>
<thead>
<tr>
<th>GENERAL SITE DESCRIPTION AND IMPROVEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBJECT PROPERTY ACREAGE:</td>
</tr>
<tr>
<td>BUILDING(S) DESCRIPTION:</td>
</tr>
<tr>
<td>ADJOINING ROADS:</td>
</tr>
<tr>
<td>CONSTRUCTION DATE(S):</td>
</tr>
<tr>
<td>EXTERIOR IMPROVEMENTS:</td>
</tr>
<tr>
<td>UNIMPROVED AREAS:</td>
</tr>
</tbody>
</table>

D3G was provided an ALTA/NSPS Land Title Survey prepared by Bock & Clark Corporation dated June 27, 2018, which depicts the subject property boundaries, acreage, structures, exterior improvements, easements, legal description, and general vicinity characteristics. A copy of the ALTA/NSPS Land Title Survey is included in Appendix B.

3.4.1 Subject Property Utilities

<table>
<thead>
<tr>
<th>SUBJECT PROPERTY UTILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICITY:</td>
</tr>
<tr>
<td>NATURAL GAS:</td>
</tr>
<tr>
<td>WATER:</td>
</tr>
<tr>
<td>SANITARY SEWER:</td>
</tr>
<tr>
<td>INDUSTRIAL WASTEWATER:</td>
</tr>
<tr>
<td>SOLID WASTE:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATING SOURCE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity:</td>
<td>1980 - current</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COOLING SOURCE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity:</td>
<td>1980 - current</td>
</tr>
</tbody>
</table>

3.5 Current Uses of Adjoining Properties

<table>
<thead>
<tr>
<th>DIRECTION</th>
<th>LAND USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH:</td>
<td>Single-family residential</td>
</tr>
<tr>
<td>SOUTH:</td>
<td>Rockingham Lane, Northrich Baptist Church, undeveloped grassed land, and Camelot Shopping Center</td>
</tr>
<tr>
<td>EAST:</td>
<td>Single-family residential</td>
</tr>
<tr>
<td>WEST:</td>
<td>Camelot Apartments</td>
</tr>
</tbody>
</table>
The southern adjacent Camelot Shopping Center is discussed further in Sections 5.1.1 and 5.6.

*Tenants include: Arapaho Bingo, Billiard Den, Cocina De Mi Casa, Cookies, Volume Hookah Lounge, Resale, Karate, Salvadorian Cuisine, Zak’s Donuts, and Holy Frijoles. See Appendix B for a copy of the Site Plan, which identifies subject property structure(s) and general vicinity characteristics.

4.0 USER PROVIDED INFORMATION

4.1 Title Records

<table>
<thead>
<tr>
<th>OWNER</th>
<th>PURCHASE DATE</th>
<th>DEED BOOK/PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Church Residences</td>
<td>4/4/2019</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

SOURCE - Dallas County assessment documents

Due to the nature of the tax assessment documents and deed records, a thorough chain-of-title was not reasonably ascertainable.

4.2 Environmental Liens or Activity and Use Limitations (AULs)

It is the User’s responsibility to provide D3G with information pertaining to environmental liens or AULs. According to information provided in the completed User Questionnaire, there are no environmental liens or AULs associated with the subject property.

4.3 Specialized Knowledge

According to the completed User Questionnaire, the Current Landowner Representative did not indicate to D3G that they were aware of any specialized knowledge or experience that is material to recognized environmental conditions in connection with the subject property. The Current Landowner Representative was unaware of any environmental liens or activity use limitations (AULs) encumbering the property or in connection with the subject property.

4.4 Commonly Known or Reasonably Ascertainable Information

The Current Landowner Representative did not indicate to D3G, in the completed User Questionnaire, that they were aware of commonly known or reasonably ascertainable information within the local community about the property that is material to recognized environmental conditions in connection with the property.
4.5 Valuation Reduction for Environmental Issues

According to the completed User Questionnaire, the Current Landowner Representative indicated the subject property is being refinanced and there is no valuation reduction for environmental issues pertaining to the subject property.

4.6 Owner, Property Manager, and Occupant Information

The subject property is currently owned by National Church Residences and the Current Landowner questionnaire is discussed further in Sections 7.1 and 7.2. Ms. Lea Ann Wilson, Property Manager with National Church Residences, is the current Key Site Manager and the questionnaire is discussed further in Section 7.4.

4.7 Reason for Performing Phase I ESA

The user informed D3G that the Phase I ESA is being performed because the subject property is being refinanced and is seeking funding through the Texas Department of Housing and Community Affairs (TDHCA) with no additional HOME, NSP, TCAP, NHTF, or 811 PRA funding.

4.8 Previous Environmental Reports

A previous Phase I ESA report prepared by F3, Inc., dated May 6, 2015 was provided to D3G for review. F3, Inc. concluded that there were no recognized environmental conditions (RECs) associated with the subject property, and an Asbestos Operations and Maintenance (O&M) Program should be implemented in order to safely manage the suspect asbestos-containing material at the subject property. Asbestos-containing material is discussed further in Section 8.1 of this report. A copy of the previous Phase I ESA is included in Appendix M of this report.
5.0 RECORDS REVIEW

5.1 Standard Environmental Record Sources

5.1.1 State Regulatory Records

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>SEARCH DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE AND TRIBAL LEAKING STORAGE TANK DATA (LUST/LAST)</td>
<td>0.50 Mile</td>
</tr>
<tr>
<td>STATE AND TRIBAL STORAGE TANK DATA (UST/AST)</td>
<td>0.25 Mile</td>
</tr>
<tr>
<td>STATE AND TRIBAL VOLUNTARY CLEANUP PROGRAM SITES (VCP)</td>
<td>0.50 Mile</td>
</tr>
<tr>
<td>STATE AND TRIBAL BROWNFIELD SITES (BROWNFIELDS)</td>
<td>0.50 Mile</td>
</tr>
<tr>
<td>STATE AND TRIBAL HAZARDOUS WASTE SITES (SHWS)</td>
<td>1.00 Mile</td>
</tr>
<tr>
<td>STATE AND TRIBAL INSTITUTIONAL/ENGINEERING CONTROLS (IC/EC)</td>
<td>0.125 Mile</td>
</tr>
<tr>
<td>STATE AND TRIBAL REGISTERED SOLID WASTE LANDFILLS (SWL)</td>
<td>0.75 Mile</td>
</tr>
</tbody>
</table>

Source - State of Texas governmental records accessed by Environmental Data Resources Inc. (EDR)

Camelot Shopping Center, located adjacent to the southwest and presumably hydrogeologically cross-gradient from the subject property at 580 West Arapaho Road, is listed as a VCP facility. According to the EDR Report, the dry cleaner facility ID: 1158 consisted of 6.4 acres and had reported chlorinated solvent contamination in the soil and groundwater media. The facility received a completed VCP on March 15, 2000 and has a non-residential AUL in place. D3G submitted a FOIA request with the Texas Commission of Environmental Quality (TCEQ) to obtain records regarding the adjacent VCP facility.

D3G was provided a Phase I Environmental Site Assessment prepared by White Rock Consulting, Inc. (WRC), dated December 7, 1999. According to the report, the Camelot Shopping Center property consisted of undeveloped land prior to the construction of the shopping center in the late 1960s. The shopping center consisted of four (4) single-story buildings located on approximately 6.4 acres. Barton Howell Cleaners occupied the suite at the northern end of Building 200 in the Camelot Shopping Center from approximately 1968 to 1974. According to the Barton Howell Cleaners former owner, Alvin Barton, dry cleaning operations were performed on-site. Based on the findings of the Phase I ESA, WRC recommended further investigation, including soil and groundwater sampling in regards to the potential adverse impacts from the historic dry-cleaning operations.

D3G was provided a Phase II ESA prepared by WRC, dated January 6, 2000. According to the report, in December 1999, WRC advanced four (4) soil borings outside and two in the interior of Building 200. Three (3) of the exterior soil borings were advanced to twenty (20) feet below the ground surface (bgs) and converted to groundwater monitoring wells, as shown in Figure 3: Sample Locations. One (1) 8-foot deep boring was drilled and sampled at the north end of Building 200, in closest proximity to the subject property, and no groundwater was encountered. Soil analytical results were not found to contain volatile organic compounds (VOCs), with the exception of acetone. Acetone concentrations were detected well below the maximum contaminant level (MCL) for a residential setting. Analytical results detected 33.3 μg/L
tetrachloroethene (PCE), levels above the Texas Natural Resource Conservation Commission (TNRCC) reportable concentration, in one (1) monitoring well (MW-3) located at the south end of the building and presumably down-gradient from the dry-cleaners. Based on the results of the Phase II ESA, WRC concluded that the property had been adversely impacted by PCE contamination and the source of contamination was most likely attributed to the historic on-site dry-cleaning operations.

D3G reviewed a Site Investigation Report (SIR) prepared by Chiang, Patel & Yerby, Inc., dated March 2000. In February 2000, four (4) additional monitoring wells and two (2) hand auger borings were drilled and sampled in order to define the extent and concentration levels of PCE contamination at the property. The additional sampling locations are depicted in Figure 2: Site Sketch/Boring Location. Only MW-5, located at the southwest end of Building 200, encountered groundwater during drilling. However, analytical results showed no VOCs contamination above the detection limits in MW-5. On January 19, 2000, WRC resampled MW-3 for analysis of VOCs and Total Dissolved Solids (TDS). Results from two different laboratories indicated PCE at 41.2 and 36 μg/L and TDS at 652 mg/L. MW-3 was sampled again on February 15, 2000 and analytical results indicated PCE at 22 μg/L. Analytical results for soil samples detected insignificant acetone concentrations. In addition, according to the Texas Water Development Board (TWDB) and TNRCC databases and records there are no water wells within a one-mile radius of the Camelot Shopping Center. The SIR concluded that there is one (1) localized area of contamination confined to MW-3; however, the impact source is nonconclusive. A possible source is the dry-cleaner operations in Building 200 and another possibility is solvents that may have been disposed of in the grassy area containing a dumpster at the south end of Building 200. Based on geology and hydrology data collected from the twelve (12) borings, it was concluded that a shallow perched water body of limited vertical and horizontal extent underlies the vicinity of MW-3. The potential for contamination migration is very low to non-existent and therefore, risks to human health and the environment from the site appear to be minimal and further assessment may not be warranted for the TNRCC to accept the site into the Voluntary Cleanup Program (VCP).

In a Comment Letter dated May 4, 2000, the TNRCC reviewed the SIR prepared by Chiang, Patel & Yerby, Inc., dated March 2000. The TNRCC provided an enclosure with a list of deficiencies and requested that Mr. Melvin Green, Director of Environmental and Geotechnical Programs with Chiang, Patel & Yerby, Inc., provide a written response to each comment by June 28, 2000.

In a Response Letter dated June 1, 2000, Mr. Green provided responses for each TNRCC comment and additional proposed field investigations including measuring water levels of monitoring wells and collecting soil samples throughout the entire 6.4 acres, along the sanitary sewer line, adjacent to indoor and outdoor drains, and the ground surface beneath roof vents where vapors/condensate may have been released.
In a letter dated June 15, 2000, the TNRCC reviewed and modified field investigation activities from the Response Letter. A letter from Mr. Green, dated July 24, 2000, outlined the additional field investigations performed by Chiang, Patel & Yerby, Inc. on June 19 through June 22. Results of the June additional field investigations are included in the Supplemental Report to Site Investigation Report.

D3G reviewed a Supplemental Report to Site Investigation Report prepared by Chiang, Patel & Yerby, Inc., dated July 2000. According to the report, field investigations performed on June 19-22 included sampling of nine (9) soil grid sampling borings, two (2) borings at the floor drains inside Suite 200, and three (3) borings beneath the vent and along the sewer line of the suite. See Figure 1 and Figure 2: Site Sketch/Boring Location. Grid sampling borings were tested for TPH, arsenic, chromium, and lead and the borings inside the building were tested for TPH and VOCs. Soil analytical results detected low concentrations of acetone and TPH concentrations below laboratory detection levels. One (1) soil sample from MW-5 at 14-19 feet bgs also detected a low concentration of methyl isobutyl ketone. In addition, all seven (7) monitoring well levels were measured and then purged and sampled. Monitoring wells were tested for VOCs and MW-3, which contains PCE, was tested for SVOCs. Groundwater sampling results detected PCE in only MW-3. No other VOCs or SVOCs were detected in the monitoring wells. Based on recorded water levels, the groundwater gradient slopes to the east-southeast as depicted in Figure 3: Ground Water Elevations. The Supplemental Report results supported the conclusions of the SIR that contamination is limited to the MW-3 area and is most likely attributed to the dumping of organic solvents in the grassy/dumpster area south of Building 200.

In a letter dated November 10, 2000, the TNRCC reviewed the SIR and Supplemental Report to SIR prepared by Chiang, Patel & Yerby, Inc. The TNRCC issued a Voluntary Cleanup Program Final Certificate of Completion (VCP COC) dated November 7, 2000. In a letter dated January 23, 2001, the TNRCC received the required proof of filing the VCP COC for the closure of the site. The TNRCC confirmed that no further action was necessary for the Camelot Shopping Center.

The closest monitoring well to the subject property, MW-1, is located approximately 320 feet southwest of the subject property boundary and approximately 350 feet southwest of the closest subject property structure based on measurements obtained using Google Earth. No contamination was detected in samples collected from MW-1. Groundwater is documented as flowing in the east-southeasterly direction, cross-gradient to the subject property. Per the ASTM-E2600-15 Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions Section 9.2, the critical distance is the lineal distance in any direction between the nearest edge of the contaminated plume and the nearest Target Property boundary, and is equal to 100 ft. (30.5 m) for Contaminants of Concern (COC) or 30 ft. (9 m) for dissolved petroleum hydrocarbon COC. The critical distance represents an estimate of the lineal distance COC vapors volatilized from contaminated groundwater or contaminated soil might migrate in the vadose zone to the Target Property. Therefore, the groundwater contaminant plume is located greater than the 100-foot Vapor Encroachment Screening critical distance for the contaminants of concern. Based on the presumed hydrogeologic relationship and the distance and delineated extent of groundwater contamination in the east-
southeasterly direction at the adjacent facility, the adjacent VCP is not suspected to present an environmental concern to the subject property. The facility is discussed further in Section 5.6. A copy of the regulatory case file is included in Appendix N.

The remaining state-regulated facilities are not located on-site or adjacent and are not of environmental concern to the subject property. The closest remaining record is located approximately 0.16 miles to the south-southwest and presumed hydrogeologically cross-gradient from the subject property. Based on the listed distances, presumed hydrogeologic relationships and/or current regulatory statuses, the remaining state-regulated facilities are not suspected to have negatively impacted the environmental integrity of the subject property.

5.1.2 Federal Regulatory Records

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>SEARCH DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA NATIONAL PRIORITIES LISTING (NPL – SUPERFUND)</td>
<td>1.00 Mile</td>
</tr>
<tr>
<td>EPA NATIONAL PRIORITIES LISTING (NPL – DELISTED SITES)</td>
<td>0.50 Mile</td>
</tr>
<tr>
<td>EPA SUPERFUND ENTERPRISE MANAGEMENT SYSTEM (SEMS)</td>
<td>0.50 Mile</td>
</tr>
<tr>
<td>EPA SEMS ARCHIVED SITES (SEMS-ARCHIVE)</td>
<td>0.50 Mile</td>
</tr>
<tr>
<td>EPA RESOURCE CONSERVATION AND RECOVERY ACT (RCRA)</td>
<td>0.25 Mile</td>
</tr>
<tr>
<td>EPA RCRA TREATMENT, STORAGE, AND DISPOSAL (TSD)</td>
<td>0.50 Mile</td>
</tr>
<tr>
<td>FEDERAL INSTITUTIONAL/ENGINEERING CONTROLS (IC/EC)</td>
<td>0.125 Mile</td>
</tr>
<tr>
<td>EPA EMERGENCY RESPONSE NOTIFICATION-SITES (ERNS)</td>
<td>0.15 Mile</td>
</tr>
<tr>
<td>EPA RCRA CORRECTIVE ACTION REPORT (CORRACTS)</td>
<td>1.00 Mile</td>
</tr>
</tbody>
</table>

SOURCE – Environmental Protection Agency records accessed by Environmental Data Resources Inc. (EDR)

No federally-regulated facilities were identified in the EDR Report.

5.1.3 Non-Geocoded Sites

No non-geocoded sites were determined to be located within the applicable search radius for ASTM E 1527-13.

5.2 Additional Environmental Record Sources

There were no other sources for environmental records that were reviewed for this study.
5.3 Physical Setting Sources

5.3.1 Topography and Regional Surface Water

<table>
<thead>
<tr>
<th>TOPOGRAPHY AND REGIONAL SURFACE WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEVATION (feet above mean sea level)</td>
</tr>
<tr>
<td>SLOPE</td>
</tr>
<tr>
<td>APPROXIMATE GROUNDWATER FLOW</td>
</tr>
<tr>
<td>REGIONAL SURFACE WATER</td>
</tr>
</tbody>
</table>

SOURCE - USGS Topographic Quadrangle – Garland, Texas 2019

Located in Appendix A is a topographic map depicting subject property elevations and drainage patterns. Depth to groundwater fluctuates depending on hydrological and weather conditions.

On-site drainage at the subject property is suspected to consist of flow along the asphalt parking areas to strategically located storm drains and surface percolation in the unpaved areas.

5.3.2 Soil Characteristics

<table>
<thead>
<tr>
<th>SOIL CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL TYPE</td>
</tr>
<tr>
<td>Houston Black-Urban land complex (45): This map unit consists of level to nearly level, moderately well drained soils on circular gilgai on ridges on dissected plains. Water movement in the most restrictive layer is ow and shrink-swell potential is very high. This soil is not flooded nor ponded. This soil does not meet hydric criteria. The urban land is a miscellaneous area.</td>
</tr>
</tbody>
</table>

5.4 Historical Use Information on the Subject Property

5.4.1 Review of Aerial Photographs

A copy of the aerial photography is included in Appendix D of this report.
5.4.2 Fire Insurance Maps

Sanborn Maps generally cover areas of urban and industrial development from the 1800s to the 1990s. According to the Certified Sanborn Map Report prepared by EDR, the subject property and surrounding properties are not included in Sanborn Map coverage. A copy of the Certified Sanborn Map Report is included in Appendix D.

5.4.3 Other Historical Sources

No additional historical sources were reasonably ascertainable.

5.4.4 Summary of Subject Property History

According to the reviewed subject property historical information, the subject property consisted of agricultural farmland from at least 1942 until prior to the construction of the current subject property structures in 1980. The use of pesticides and fertilizers are often associated with agricultural activities. The former agricultural land use may also have produced surface run-off of farm wastes high in nitrates and other nutrients. Subject property observations did not indicate that previous agricultural activities have negatively impacted the environmental condition of the subject property.

5.5 Historical Use Information on Adjoining Properties

5.5.1 Review of Aerial Photographs

A copy of the aerial photography is included in Appendix D of this report.

5.5.2 Fire Insurance Maps

Sanborn Maps generally cover areas of urban and industrial development from the 1800s to the 1990s. According to the Certified Sanborn Map Report prepared by EDR, the subject property and surrounding properties are not included in Sanborn Map coverage. A copy of the Certified Sanborn Map Report is included in Appendix D.

5.5.3 Other Historical Sources

No additional historical sources were reasonably ascertainable.
5.6 Tier 1 Vapor Encroachment Screening

D3G performed a Tier 1 Vapor Encroachment Screen (VES) in compliance with ASTM E 2600-15 “ASTM Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions” as amended. The purpose of the Tier 1 VES is to conduct an initial screen to determine if a Vapor Encroachment Condition (VEC) exists in connection with the subject property. A VEC is defined as the presence or likely presence of chemical(s) of concern (COC) vapors in the subsurface (vadose zone) of the subject property caused by the release of vapors from contaminated soil and/or groundwater either on or near the subject property, as identified by Tier I and/or Tier II procedures.

The VES process is a two (2)-tiered screening process. The Tier 1 VES is based upon information typically collected during an ASTM Standard E 1527 Phase I ESA and is typically focused on known or suspected contaminated properties that may exist within the area of concern (AOC). D3G reviewed standard environmental record sources including, but not limited to, local, state, tribal and/or federal (LSTF) government records, as reported in the regulatory database report; chemical use and historical records of prior uses on the subject property and within proximity of the subject property; soil characteristics; geological characteristics; contaminant characteristics and plume migration data (if this data is readily available); significant conduits that that might provide preferential pathways for vapor migration; and groundwater depth and groundwater flow data to identify known or suspected sources of contamination within the AOC.

According to ASTM E 2600-15, the AOC is defined by the approximate minimum search distance which is based upon the chemical of concern (i.e. petroleum hydrocarbons vs. non-petroleum hydrocarbons) and the location of a known or suspected source of contamination with respect to the subject property. The Tier 1 screening includes: (1) a search distance test to determine whether there are any known or suspect contaminated properties within the AOC; and (2) COC Test to determine for those known or suspect contaminated properties within the AOC whether COCs are likely to be present in order to evaluate the likelihood that a VEC exists at the subject property. If information related to the boundaries of a contaminant plume from known contaminated properties is available, a critical distance test may be conducted. The critical distance is defined as the lineal distance between the nearest edge of the contaminant plume and the nearest subject property boundary. The critical distance is equal to one hundred (100) feet for COC or thirty (30) feet for dissolved petroleum hydrocarbon COCs. The critical distance for petroleum hydrocarbon COCs as light non-aqueous phase liquid (LNAPL), such as gasoline product(s), is one hundred (100) feet. If groundwater flow direction can be estimated, the AOC in the down-gradient direction may be reduced to the area within the critical distance during the Tier 1 screening. Additionally, the cross-gradient direction may be reduced to the critical distance plus one half of a reasonable estimation of the contaminated plume width or three hundred sixty-five (365) feet. It is not necessary to obtain information regarding the contaminant plume dimensions for down-gradient and cross-gradient contaminated properties, as the critical distance is measured from the nearest subject property boundary directly to the source on the off-site down-gradient property that is the origin of the contamination (with the contamination migrating away from the subject property).
For a contaminated property located up-gradient of the subject property, the critical distance determination requires knowledge of the length and depth of the groundwater contaminant plume. Such information is required to determine the lineal distance from the groundwater contaminant plume edge to the nearest existing or planned structure on the subject property, or the nearest subject property boundary if there are no existing or planned structures on the subject property. Data related to contaminant plume characteristics and dimensions associated with off-site contaminated properties is not typically available during the Tier 1 screening process and is typically obtained during the Tier 2 screening process. If it is not possible to conservatively estimate contaminant plume dimensions, then the AOC cannot be reduced in up-gradient directions during the Tier 1 screening process. Data regarding site-specific soil characteristics may also be used to adjust the AOC. Low permeability cohesive soils, such as soils high in clay and/or silt percentage content, generally tend to restrict soil gas movement, as may soil with high moisture content. Conversely, high porosity in soil tends to enhance soil gas movement. If known, this data may be utilized as a basis to either expand or reduce the AOC by the environmental professional.

The conclusions from the Tier 1 screening is: (1) a VEC exists or (2) a VEC does not exist. If a VEC does not exist, then the VES process is considered complete in accordance with the guidelines set forth under ASTM Standard E 2600-15. If a VEC exists at the subject property, the environmental professional should determine if the VEC represents a Recognized Environmental Condition (REC). If the VEC represents a REC, then further action or investigation may be recommended, including but not limited to a Tier 2 (invasive and/or non-invasive) screening and/or mitigation. If a VEC exists as determined by the Tier 1 screening process, then a more refined Tier 2 VES (non-invasive) may be completed in order to further evaluate the VEC. Tier 2 (non-invasive) focuses on characteristics of the contaminant plume associated with contaminated properties and the proximity of said contaminant plume to the subject property. This data is not typically available during the Tier 1 screening process and is typically obtained from state regulatory files and may also be obtained from other available documents and/or may be collected via sampling. Tier 2 (invasive) applies numeric screening criteria to existing or newly collected soil, soil gas, and/or groundwater testing results to further evaluate and/or validate the potential VEC.

Subject Property
Based on a review of the EDR Report, the subject property is not identified in the State Records Search or in the Federal Records Search. In addition, according to a review of subject property historical use information that is reasonably ascertainable, there are no known or suspect potentially contaminated sources having chemicals of concern (petroleum hydrocarbons or non-petroleum hydrocarbons) associated with the subject property. Therefore, a Vapor Encroachment Condition (VEC) does not exist at the subject property.
Contaminated Properties within the Area of Concern

The following is a discussion of properties that are within the area of concern:

Camelot Shopping Center, located adjacent to the southwest and presumably hydrogeologically cross-gradient from the subject property at 580 West Arapaho Road, is listed as a VCP facility. According to the EDR Report, the dry cleaner facility ID: 1158 consisted of 6.4 acres and had reported chlorinated solvent contamination in the soil and groundwater media. The facility received a completed VCP on March 15, 2000 and has a non-residential AUL in place. D3G submitted a FOIA request with the Texas Commission of Environmental Quality (TCEQ) to obtain records regarding the adjacent VCP facility.

D3G was provided a Phase I Environmental Site Assessment prepared by White Rock Consulting, Inc. (WRC), dated December 7, 1999. According to the report, the Camelot Shopping Center property consisted of undeveloped land prior to the construction of the shopping center in the late 1960s. The shopping center consisted of four (4) single-story buildings located on approximately 6.4 acres. Barton Howell Cleaners occupied the suite at the northern end of Building 200 in the Camelot Shopping Center from approximately 1968 to 1974. According to the Barton Howell Cleaners former owner, Alvin Barton, dry cleaning operations were performed on-site. Based on the findings of the Phase I ESA, WRC recommended further investigation, including soil and groundwater sampling in regards to the potential adverse impacts from the historic dry-cleaning operations.

D3G was provided a Phase II ESA prepared by WRC, dated January 6, 2000. According to the report, in December 1999, WRC advanced four (4) soil borings outside and two in the interior of Building 200. Three (3) of the exterior soil borings were advanced to twenty (20) feet below the ground surface (bgs) and converted to groundwater monitoring wells, as shown in Figure 3: Sample Locations. One (1) 8-foot deep boring was drilled and sampled at the north end of Building 200, in closest proximity to the subject property, and no groundwater was encountered. Soil analytical results were not found to contain volatile organic compounds (VOCs), with the exception of acetone. Acetone concentrations were detected well below the maximum contaminant level (MCL) for a residential setting. Analytical results detected 33.3 μg/L tetrachloroethene (PCE), levels above the Texas Natural Resource Conservation Commission (TNRCC) reportable concentration, in one (1) monitoring well (MW-3) located at the south end of the building and presumably down-gradient from the dry-cleaners. Based on the results of the Phase II ESA, WRC concluded that the property had been adversely impacted by PCE contamination and the source of contamination was most likely attributed to the historic on-site dry-cleaning operations.

D3G reviewed a Site Investigation Report (SIR) prepared by Chiang, Patel & Yerby, Inc., dated March 2000. In February 2000, four (4) additional monitoring wells and two (2) hand auger borings were drilled and sampled in order to define the extent and concentration levels of PCE contamination at the property. The additional sampling locations are depicted in Figure 2: Site Sketch/Boring Location. Only MW-5, located at the southwest end of Building 200, encountered groundwater during drilling. However, analytical results showed no VOCs contamination above...
the detection limits in MW-5. On January 19, 2000, WRC resampled MW-3 for analysis of VOCs and Total Dissolved Solids (TDS). Results from two different laboratories indicated PCE at 41.2 and 36 μg/L and TDS at 652 mg/L. MW-3 was sampled again on February 15, 2000 and analytical results indicated PCE at 22 μg/L. Analytical results for soil samples detected insignificant acetone concentrations. In addition, according to the Texas Water Development Board (TWDB) and TNRCC databases and records there are no water wells within a one-mile radius of the Camelot Shopping Center. The SIR concluded that there is one (1) localized area of contamination confined to MW-3; however, the impact source is nonconclusive. A possible source is the dry-cleaner operations in Building 200 and another possibility is solvents that may have been disposed of in the grassy area containing a dumpster at the south end of Building 200. Based on geology and hydrology data collected from the twelve (12) borings, it was concluded that a shallow perched water body of limited vertical and horizontal extent underlies the vicinity of MW-3. The potential for contamination migration is very low to nonexistent and therefore, risks to human health and the environment from the site appear to be minimal and further assessment may not be warranted for the TNRCC to accept the site into the Voluntary Cleanup Program (VCP).

In a Comment Letter dated May 4, 2000, the TNRCC reviewed the SIR prepared by Chiang, Patel & Yerby, Inc., dated March 2000. The TNRCC provided an enclosure with a list of deficiencies and requested that Mr. Melvin Green, Director of Environmental and Geotechnical Programs with Chiang, Patel & Yerby, Inc., provide a written response to each comment by June 28, 2000.

In a Response Letter dated June 1, 2000, Mr. Green provided responses for each TNRCC comment and additional proposed field investigations including measuring water levels of monitoring wells and collecting soil samples throughout the entire 6.4 acres, along the sanitary sewer line, adjacent to indoor and outdoor drains, and the ground surface beneath roof vents where vapors/condensate may have been released.

In a letter dated June 15, 2000, the TNRCC reviewed and modified field investigation activities from the Response Letter. A letter from Mr. Green, dated July 24, 2000, outlined the additional field investigations performed by Chiang, Patel & Yerby, Inc. on June 19 through June 22. Results of the June additional field investigations are included in the Supplemental Report to Site Investigation Report.

D3G reviewed a Supplemental Report to Site Investigation Report prepared by Chiang, Patel & Yerby, Inc., dated July 2000. According to the report, field investigations performed on June 19-22 included sampling of nine (9) soil grid sampling borings, two (2) borings at the floor drains inside Suite 200, and three (3) borings beneath the vent and along the sewer line of the suite. See Figure 1 and Figure 2: Site Sketch/Boring Location. Grid sampling borings were tested for TPH, arsenic, chromium, and lead and the borings inside the building were tested for TPH and VOCs. Soil analytical results detected low concentrations of acetone and TPH concentrations below laboratory detection levels. One (1) soil sample from MW-5 at 14-19 feet bgs also detected a low concentration of methyl isobutyl ketone. In addition, all seven (7) monitoring well levels were measured and then purged and sampled. Monitoring wells were tested for
VOCs and MW-3, which contains PCE, was tested for SVOCs. Groundwater sampling results detected PCE in only MW-3. No other VOCs or SVOCs were detected in the monitoring wells. Based on recorded water levels, the groundwater gradient slopes to the east-southeast as depicted in Figure 3: Ground Water Elevations. The Supplemental Report results supported the conclusions of the SIR that contamination is limited to the MW-3 area and is most likely attributed to the dumping of organic solvents in the grassy/dumpster area south of Building 200.

In a letter dated November 10, 2000, the TNRCC reviewed the SIR and Supplemental Report to SIR prepared by Chiang, Patel & Yerby, Inc. The TNRCC issued a Voluntary Cleanup Program Final Certificate of Completion (VCP COC) dated November 7, 2000. In a letter dated January 23, 2001, the TNRCC received the required proof of filing the VCP COC for the closure of the site. The TNRCC confirmed that no further action was necessary for the Camelot Shopping Center.

The closest monitoring well to the subject property, MW-1, is located approximately 320 feet southwest of the subject property boundary and approximately 350 feet southwest of the closest subject property structure based on measurements obtained using Google Earth. No contamination was detected in samples collected from MW-1. Groundwater is documented as flowing in the east-southeasterly direction, cross-gradient to the subject property. Per the ASTM-E2600-15 Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions Section 9.2, the critical distance is the lineal distance in any direction between the nearest edge of the contaminated plume and the nearest Target Property boundary, and is equal to 100 ft. (30.5 m) for Contaminants of Concern (COC) or 30 ft. (9 m) for dissolved petroleum hydrocarbon COC. The critical distance represents an estimate of the lineal distance COC vapors volatilized from contaminated groundwater or contaminated soil might migrate in the vadose zone to the Target Property. Therefore, the groundwater contaminant plume is located greater than the 100-foot Vapor Encroachment Screening critical distance for the contaminants of concern. Based on the presumed hydrogeologic relationship and the distance and delineated extent of groundwater contamination in the east-southeasterly direction at the adjacent facility, the adjacent VCP is not suspected to present an environmental concern to the subject property. Therefore, a Vapor Encroachment Condition (VEC) does not exist at the subject property from this off-site source. A copy of the regulatory case file is included in Appendix N.
6.0 SITE RECONNAISSANCE

6.1 Methodology and Limiting Conditions

D3G’s site inspection consisted of visual observations along boundaries and various transects throughout the subject property. On the interior, common areas such as lobbies, hallways, utility rooms, recreation areas, maintenance and repair areas, and a representative sample of occupant spaces were observed. The adjacent properties were observed from the subject property and the boundaries of the subject property and public right-of-ways.

6.2 General Site Setting

The subject property consists of five (5) single-story age-restricted apartment structures and one (1) single-story community building constructed in 1980. The subject property structures contain a total of fifty (50) residential dwelling units and are situated on approximately 3.280 acres of land. The subject property contains a gross building area of approximately 37,680 square feet. Located within the community building are laundry facilities, a leasing office, a community room and kitchen, and maintenance areas. Exterior property improvements include a community garden, landscaped regions, and asphalt parking areas. The subject property is serviced by electricity and municipally supplied water and sewer. The subject property is seeking funding through the Texas Department of Housing and Community Affairs (TDHCA) with no additional HOME, NSP, TCAP, NHTF, or 811 PRA funding.

6.3 Exterior Observations

<table>
<thead>
<tr>
<th>EXTERIOR OBSERVATIONS</th>
<th>OBSERVED</th>
<th>NOT OBSERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARDOUS MATERIALS AND PETROLEUM PRODUCTS</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>POLYCHLORINATED BIPHENYLS (PCBS)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>SUBJECT PROPERTY DUMPED MATERIALS/LANDFILLS</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SOLID WASTE DISPOSAL</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>SPILLS/STAINED SOILS/STAINED PAVEMENT/STRESSED VEGETATION</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>STORAGE TANKS NOT PREVIOUSLY LISTED</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>WELLS NOT PREVIOUSLY LISTED</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>HAZARDOUS RUNOFF</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PITS, PONDS, OR LAGOONS*</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ODORS</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

*Excludes stormwater drainage features

(1) Located at exterior locations of the property are five (5) pad-mounted electrical transformers, which are owned and maintained by TXU Energy. The on-site electrical transformers were not affixed with “Non-PCB” stickers; however, based on the facility’s date of construction (1980), the transformer oil is not suspected to contain regulated levels of PCBs. In addition, leakage was not visually observed on or around the transformers and in their current physical condition they are not believed to present environmental concerns to the subject property.
Located in designated areas of the property are two (2) solid waste dumpsters. No staining and/or visual signs of spillage were observed in the vicinity of the dumpsters during the subject property visit.

6.4 Interior Observations

<table>
<thead>
<tr>
<th>INTERIOR OBSERVATIONS</th>
<th>OBSERVED</th>
<th>NOT OBSERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARDOUS MATERIALS AND PETROLEUM PRODUCTS</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>POLYCHLORINATED BIPHENYLS (PCBS)</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>STORAGE TANKS NOT PREVIOUSLY LISTED</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>ODORS</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>DRAINS AND/OR SUMPS</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>POOLS OF LIQUID</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

No bulk storage of hazardous materials or petroleum products was identified at the subject property. However, paints and cleaning products are stored in the maintenance areas. None of the stored materials were observed to be leaking or to have had signs of major spillage. No floor drains or other potential receptors for the release of hazardous materials were observed within the areas of material storage. The on-site chemicals are commercially available, stored in limited quantities, and are not believed to present an environmental concern to the subject property.

7.0 Interviews

7.1 Prospective Landowner/User Questionnaire

A Property Questionnaire was completed by Ms. Lea Ann Wilson, Property Manager with National Church Residences and the Current Landowner Representative, and returned to D3G. Ms. Wilson indicated that the subject property was purchased on April 4, 2019 and that the purchase price paid reasonably reflected the fair market value. Additionally, Ms. Wilson indicated that she has been associated with the subject property for nineteen (19) years. A copy of the completed Property Questionnaire is included in Appendix F.

7.2 Current Landowner Questionnaire

A User Property Questionnaire was completed by Ms. Lea Ann Wilson, Property Manager with National Church Residences and the Current Landowner Representative; therefore, an additional questionnaire is not warranted.
7.3 Previous Landowner Questionnaire

A Property Questionnaire was provided to National Church Residences to forward to the Previous Landowner; however, it was not returned to D3G. This is noted in Section 2.4.

7.4 Key Site Manager Questionnaire

A Property Questionnaire was completed by Ms. Lea Ann Wilson, Property Manager with National Church Residences and the Key Site Manager, and returned to D3G. Ms. Wilson indicated that she has been associated with the subject property for nineteen (19) years. A copy of the completed Property Questionnaire is included in Appendix F.

7.5 Occupant Questionnaire

The subject property is currently utilized for residential purposes; therefore, an Occupant Questionnaire is not necessary for this investigation pursuant to ASTM E 1527 13 Section 10.5.2.1.

7.6 Local Agencies Contacted

D3G contacted the City of Richardson Fire Department on November 14, 2019 for a review of their environmental records (i.e. USTs, hazardous materials storage, and spills) for the subject property. According to Mr. Wesley Caskey, Fire Marshal, no records were available for former or current underground storage tanks or spills at the subject property. A copy of the correspondence is located in Appendix F of this report.

D3G contacted the Texas Commission on Environmental Quality (TCEQ) on November 14, 2019 for a review of their environmental records including regional environmental health issues, on-site wells and/or septic system records for the subject property. According to Ms. Marie Boren, Customer Services Representative, there are no records on file for the subject property or regional environmental health issues. A copy of the correspondence is located in Appendix F of this report.

7.7 Additional Persons Interviewed

<table>
<thead>
<tr>
<th>INTERVIEWED PERSON</th>
<th>POSITION/RELATION TO PROPERTY</th>
<th>INTERVIEW DATE</th>
<th>CONTENT OF DISCUSSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Davis</td>
<td>Maintenance Supervisor</td>
<td>12/4/2019</td>
<td>Discussed subject property operations/history and toured the property.</td>
</tr>
</tbody>
</table>
8.0 INVESTIGATION FOR NON-SCOPE CONSIDERATIONS

8.1 Asbestos-Containing Materials

The facility was constructed in 1980; therefore, asbestos-containing materials (ACMs) are not suspected to be a concern at the subject property. However, compliance with 40 CFR 61 Subpart M is recommended prior to any renovation or demolition activities at the subject property.

8.2 Lead-Based Paint

The facility was constructed in 1980, after the 1978 ban on lead-based paint (LBP); therefore, LBP is not suspected to be present at the subject property.

8.3 Radon Gas

<table>
<thead>
<tr>
<th>U.S. EPA RADON DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZONE</td>
</tr>
<tr>
<td>ZONE DEFINITION</td>
</tr>
<tr>
<td>SOURCE</td>
</tr>
</tbody>
</table>

The property does not contain subgrade living areas, which reduces the potential for radon gas. Radon testing is not included within the scope of work of this Phase I ESA.

8.4 Flood Zone

According to FEMA Flood Insurance Rate Map (FIRM) # 48113C-0205K, dated July 7, 2014, the subject property is located in Zone X, designated as an area outside the 100 and 500-year flood zones and the flood potential for the subject property is minimal. A copy of the FIRM is provided in Appendix A.

According to the FEMA Flood Map Service Center accessed at https://msc.fema.gov/portal/home, there are no preliminary or pending FIRMs for the subject property.

8.5 Wetlands

A wetland delineation/determination has not been performed at the subject property; however, according to the USFWS National Wetlands Inventory Layer accessed at http://nepassisttool.epa.gov/nepassist/entry.aspx and visual observations, there are not suspected to be any wetland areas on the subject property. A copy of the NWI Map Layer is provided in Appendix A.
8.6 **Lead in Drinking Water**

According to the City of Richardson 2019 Water Quality Report, lead in drinking water was detected at 0.00265 parts per billion (ppb) in the 90th percentile for sampling performed in 2017, which is below the EPA action level of 15 ppb and meets all EPA Standards. Therefore, lead in drinking water is not suspected to be a concern at the subject property. A copy of the City of Richardson 2019 Water Quality Report is located in Appendix J.

8.7 **Noise Analysis/Airport Hazards**

The subject property is located within 1,000 feet of West Arapaho Road and within fifteen (15) miles of the Addison Airport and Dallas Love Field Airport. There are no railways within 3,000 feet of the subject property or other military airfields or civil airports that would be considered a noise source within fifteen (15) miles of the subject property. No major noise sources are located in the immediate vicinity of the subject property. According to HUD guidelines, a noise analysis is not necessary for a refinance/acquisition.

According to Federal Aviation Administration (FAA) information accessed at https://oeaaa.faa.gov/oeaaa/external/searchAction.jsp?action=showCircleSearchAirportsForm and http://nepassisttool.epa.gov/nepassist/entry.aspx, there are no military airports within 15,000 feet of the subject property or civil airport runways within 2,500 feet of the subject property.

A copy of the Noise Analysis/Airport Hazards Documentation is located in Appendix K.

8.8 **Nuisances and Hazards**

According to the Texas Railroad Commission Public GIS Map Viewer accessed at http://wwwgisp.rrc.texas.gov/GISViewer2/, there are no oil wells or high-pressure gas transmission lines located on or in the vicinity of the subject property.

According to the National Pipeline Mapping System (NPMS) accessed at https://www.npms.phmsa.dot.gov/PublicViewer/composite.jsp and visual observations, there are no high-pressure gas transmission lines located on or in the vicinity of the subject property.

No additional "nuisances" or "hazards" were observed at the subject property or surrounding properties during the subject property inspection.

A copy of the Nuisances and Hazards Documentation is located in Appendix L.
9.0 FINDINGS

This Phase I ESA was prepared in accordance with ASTM Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process Designation: E 1527-13, 40 CFR Part 312 Standards and Practices for All Appropriate Inquiries: Final Rule, accepted Phase I ESA industry standards, 2020 TDHCA environmental protocols, and Texas Administrative Code – Title 10, Rule §11.305 Environmental Site Assessment Rules and Guidelines. This assessment has revealed the following findings, consisting of RECs, CRECs, HRECs, and environmental concerns, based on the subject property inspection, interviews, and review of available records:

<table>
<thead>
<tr>
<th>EVALUATED CONDITIONS</th>
<th>ON-SITE</th>
<th>ADJACENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD ENVIRONMENTAL RECORDS REVIEW</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>UNREGULATED UNDERGROUND STORAGE TANK(S) (UST)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PAST INDUSTRIAL/DETRIMENTAL OPERATIONS</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VAPOR ENCROACHMENT CONDITION</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>STORED HAZARDOUS MATERIALS</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>POLYCHLORINATED BIPHENYLS (PCBS)</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>ABOVEGROUND STORAGE TANK(S) (AST)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DUMPING</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HAZARDOUS RUN-OFF</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ASBESTOS-CONTAINING MATERIALS</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>LEAD-BASED PAINT</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>RADON GAS</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOD ZONE</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>WETLANDS</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>LEAD IN DRINKING WATER</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>NOISE ANALYSIS/AIRPORT HAZARDS</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>NUISANCES AND HAZARDS</td>
<td>No</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA = Not Applicable

10.0 OPINION

Recognized Environmental Conditions (RECs)

As defined in ASTM E 1527 13, RECs are the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment. Based on the findings of this Phase I ESA, no RECs were identified.
Controlled Recognized Environmental Conditions (CRECs)
As defined in ASTM E 1527 13, CRECs are RECs resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls). Based on the findings of this Phase I ESA, no CRECs were identified.

Historical Recognized Environmental Conditions (HRECs)
As defined in ASTM E 1527 13, HRECs involve a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls. Based on the findings of this Phase I ESA, no HRECs were identified.

Environmental Concerns
D3G defines “environmental concerns” as de minimis conditions and non-scope considerations for which further action is recommended. As defined in ASTM E 1527 13, de minimis conditions generally do not present a threat to human health or the environment and generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. Non-scope considerations include assessed environmental issues or conditions beyond the scope of ASTM E 1527 13 as stated in Section 2.2 and/or discussed below. Based on the findings of this Phase I ESA, no environmental concerns were identified.

11.0 CONCLUSIONS
Dominion Due Diligence Group performed a Phase I Environmental Site Assessment (ESA) in conformance with the scope and limitations of ASTM Practice E 1527-13 of the Brandywine Apartments located at 500 Rockingham Drive in Richardson, Dallas County, Texas (subject property). Any exceptions to, or deletions from, this practice are described in Section 2.4 of this report. This assessment has revealed no evidence of recognized environmental conditions (RECs) or controlled recognized environmental conditions (CRECs) in connection with the subject property.

12.0 DEVIATIONS
There are no deviations from the ASTM standard Phase I ESA except for those outlined in Section 2.4 of this report.
13.0 ADDITIONAL SERVICES

No additional services were contracted between the User and D3G.

14.0 REFERENCE MATERIALS

- City of Richardson Fire Department
- Texas Commission on Environmental Quality (TCEQ)
- Dallas County Assessor
- USGS Topographic Quadrangle – Garland, Texas 2019
- Environmental Data Resources Inc. (EDR) Report, dated November 22, 2019
- FEMA Flood Insurance Rate Map (FIRM) # 48113C-0205K, dated July 7, 2014
- Delorme Street Atlas USA® 2015
- EDR – aerial photographs
- EDR Certified Sanborn Map Report
- EPA Radon Map
- U.S. EPA NEPAssist access at http://nepassisttool.epa.gov/nepassist/entry.aspx
 Below provides basic descriptions for the data included in the mapping layers available through NEPAssist that were utilized in this Phase I ESA
 - USFWS National Wetlands Inventory map accessed at http://www.fws.gov/wetlands/Data/Mapper.html
 - The Airport Polygons layer includes airport boundaries and airport runways within the United States. Source: National Transportation Atlas Database
- Previous Phase I ESA report prepared by F3, Inc., dated May 6, 2015
- ALTA/NSPS Land Title Survey prepared by Bock & Clark Corporation dated June 27, 2018
15.0 SIGNATURE OF ENVIRONMENTAL PERSONNEL

Data presented in this report is factual to the best of our knowledge. Available sources of data were comprehensively researched to provide a complete Phase I ESA of the subject property. The Phase I ESA was prepared in accordance with ASTM Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process (Designation E 1527-13), 40 CFR Part 312 Standards and Practices for All Appropriate Inquiry: Final Rule, and accepted Phase I ESA industry standards, 2020 TDHCA environmental protocols, and Texas Administrative Code – Title 10, Rule §11.305 Environmental Site Assessment Rules and Guidelines.

D3G has no financial interest or family relationship with the officers, directors, stockholders or partners of the Borrower, the general contractor, any subcontractors, the buyer or seller of the proposed property or engage in any business that might present a conflict of interest.

D3G is employed under contract for this specific assignment and has no other side deals, agreements, or financial considerations with the Lender or others in connection with this transaction. D3G will not materially benefit from the Development other than by receiving a fee for the report and the fee is not contingent upon the report’s findings.

Steve Myers, BPI-MFBA
Site Assessor

Elizabeth Fulmer
Project Manager

Joe Fuscaldo
Environmental Professional

Signature

Signature

Signature
16.0 QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in §312.10 of 40 CFR Part 312.

I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. I have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Joe Fuscaldo qualifies as an Environmental Professional as defined in 40 CFR Part 312.10(b). Mr. Fuscaldo has numerous years of extensive training and experience with regards to environmental issues. He received undergraduate B.S. degrees in Geology and in Environmental Science from the College of William and Mary and has inspected, managed and designed numerous environmental projects throughout the United States. Mr. Fuscaldo also has extensive knowledge of the ASTM E 1527 Phase I Environmental Site Assessment regulations as well as the EPA 40 CFR Part 312 Standards and Practices for All Appropriate Inquiries regulations. Mr. Fuscaldo qualifies as an Environmental Professional as defined under ASTM E 1527 Section 4.3 and Appendix X2 with over six (6) years of experience performing investigations of surface and subsurface environmental conditions. Mr. Fuscaldo’s duties as a Team Manager for Dominion Due Diligence Group include coordinating, conducting and reviewing Phase I Environmental Site Assessments (HUD, Freddie Mac, Fannie Mae, and ASTM E 1527) throughout the United States as well as coordinating, conducting and reviewing comprehensive lead-based paint and asbestos-containing material investigation/remediation projects. Mr. Fuscaldo has additionally performed numerous HUD noise assessments throughout the United States.
17.0 APPENDICES

Appendix A: Site (Vicinity) Maps
Appendix B: Site Plan
Appendix C: Site Photographs
Appendix D: Historical Research Documents
Appendix E: Regulatory Records Documentation
Appendix F: Interview Documentation
Appendix G: Special Contractual Conditions Between User and Environmental Professional
Appendix H: Qualifications of the Environmental Professionals
Appendix I: Certificate of Liability Insurance
Appendix J: City of Robinson 2017 Annual Drinking Water Quality Report
Appendix K: Noise Analysis/Airport Hazards Documentation
Appendix L: Nuisances and Hazards Documentation
Appendix M: Previous Phase I Environmental Site Assessment
Appendix N: Camelot Shopping Center VCP Regulatory Case File
APPENDIX A

Site Maps
Commercial Account #42103950010010000

Location (Current 2020)
Address: 500 ROCKINGHAM LN
Market Area: 0
Mapsco: 7-W (DALLAS)

DCAD Property Map

View Photo

2019 Appraisal Notice

Electronic Documents (ENS)

Print Homestead Exemption Form

Owner (Current 2020)
NATIONAL CHURCH RESIDENCES OF RICHARDSON TX
2335 N BANK DR
COLUMBUS, OHIO 43220.5423

Multi-Owner (Current 2020)

<table>
<thead>
<tr>
<th>Owner Name</th>
<th>Ownership %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATIONAL CHURCH RESIDENCES OF</td>
<td>100%</td>
</tr>
</tbody>
</table>

Legal Desc (Current 2020)
1: MAGGIORE
2: BLK 1 LOT 1 ACS 4.17 TOTAL
3: ABDN AREA 50X720.09
4: INT201900084221 DD04032019 CO-DC
5: 1039500100100 2CR10395001
 Deed Transfer Date: 4/4/2019

Value

<table>
<thead>
<tr>
<th>2019 Certified Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement:</td>
</tr>
<tr>
<td>Land:</td>
</tr>
<tr>
<td>Market Value:</td>
</tr>
</tbody>
</table>

Tax Agent: PROPERTY TAX ADVOCATES
Revaluation Year: 2019
Previous Revaluation Year: 2018

Improvements (Current 2020)

<table>
<thead>
<tr>
<th>#</th>
<th>Desc</th>
<th>Total Area: 37,766 sqft</th>
<th>Year Built: 1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>APARTMENT (BRICK EXTERIOR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-WOOD FRAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundation (Area): CONCRETE SLAB (37,766 sqft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Net Lease Area : 36,182 sqft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># Stories: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># Units: 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basement (Area): UNASSIGNED</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat: CENTRAL HEAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depreciation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical: 59%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functional: + 0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>External: + 0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: = 59%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality: AVERAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condition: GOOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appraisal Method</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Land (2019 Certified Values)

<table>
<thead>
<tr>
<th>#</th>
<th>State Code</th>
<th>Zoning</th>
<th>Frontage (ft)</th>
<th>Depth (ft)</th>
<th>Area</th>
<th>Pricing Method</th>
<th>Unit Price</th>
<th>Market Adjustment</th>
<th>Adjusted Price</th>
<th>Ag Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MFR - APARTMENTS</td>
<td>APARTMENT</td>
<td>0</td>
<td>0</td>
<td>181,645.0000 SQUARE FEET</td>
<td>STANDARD</td>
<td>$5.00</td>
<td>0%</td>
<td>$908,225</td>
<td>N</td>
</tr>
</tbody>
</table>

* All Exemption information reflects 2019 Certified Values. *

Exemptions (2019 Certified Values)

No Exemptions

Estimated Taxes (2019 Certified Values)

<table>
<thead>
<tr>
<th>Taxing Jurisdiction</th>
<th>City</th>
<th>School</th>
<th>County and School Equalization</th>
<th>College</th>
<th>Hospital</th>
<th>Special District</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICHARDSON</td>
<td>RICHARDSON ISD</td>
<td>DALLAS COUNTY</td>
<td>DALLAS CO COMMUNITY COLLEGE</td>
<td>PARKLAND HOSPITAL</td>
<td>UNASSIGNED</td>
<td></td>
</tr>
<tr>
<td>Tax Rate per $100</td>
<td>$0.62516</td>
<td>$1.41835</td>
<td>$0.2531</td>
<td>$0.124</td>
<td>$0.2695</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Taxes</td>
<td>$15,554.98</td>
<td>$35,290.82</td>
<td>$6,297.53</td>
<td>$3,085.32</td>
<td>$6,705.59</td>
<td>N/A</td>
</tr>
<tr>
<td>Tax Ceiling</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Total Estimated Taxes: $66,934.24

DO NOT PAY TAXES BASED ON THESE ESTIMATED TAXES. You will receive an official tax bill from the appropriate agency when they are prepared. Please note that if there is an Over65 or Disabled Person Tax Ceiling displayed above, it is NOT reflected in the Total Estimated Taxes calculation provided. Taxes are collected by the agency sending you the official tax bill. To see a listing of agencies that collect taxes for your property. Click Here

The estimated taxes are provided as a courtesy and should not be relied upon in making financial or other decisions. The Dallas Central Appraisal District (DCAD) does not control the tax rate nor the amount of the taxes, as that is the responsibility of each Taxing Jurisdiction. Questions about your taxes should be directed to the appropriate taxing jurisdiction. We cannot assist you in these matters. These tax estimates are calculated by using the most current certified taxable value multiplied by the most current tax rate. It does not take into account other special or unique tax scenarios, like a tax ceiling, etc. If you wish to calculate taxes yourself, you may use the Tax Calculator to assist you.
National Flood Hazard Layer FIRMette

Appendix A
FEMA Flood Insurance Rate Map

Brandywine Apartments
500 Rockingham Drive
Richardson, Texas
Community Panel #48113C-0205K
dated July 7, 2014

DOMINION DUE DILIGENCE GROUP
<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Jurisdiction Name</th>
<th>Product ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>-- Select --</td>
<td>RICHARDSON, CITY OF (Ex. Fairfax County-wide or 51059C)</td>
</tr>
</tbody>
</table>

Filter By Posting Date Range (Optional)

- [Search](#) - [Clear All Fields](#)

Search Results for RICHARDSON, CITY OF

- Click [subscribe](https://msc.fema.gov/portal/availabilitySearch?addcommunity=480184&communityName=RICHARDSON,CITY OF) to receive email notifications when products are updated.
- If you are a person with a disability, are blind, or have low vision, and need assistance, please contact a map specialist (https://msc.fema.gov/portal/resources/contact).

Please Note: Searching All Products by county displays all products for all communities within the county. You can refine your search results by specifying your specific jurisdiction location using the drop-down menus above.

- Effective Products (54)
- Preliminary Products (0)
- Pending Product (0)
- Historic Products (157)
- Flood Risk Products (0)

Share This Page.

Appendix A
Site Soils Map

Brandywine Apartments
500 Rockingham Drive
Richardson, Texas

http://websoilsurvey.nrcs.usda.gov/app/
Map Unit Description (Brief, Generated)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, provide information on the composition of map units and properties of their components.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

The Map Unit Description (Brief, Generated) report displays a generated description of the major soils that occur in a map unit. Descriptions of non-soil (miscellaneous areas) and minor map unit components are not included. This description is generated from the underlying soil attribute data.

Additional information about the map units described in this report is available in other Soil Data Mart reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the Soil Data Mart reports define some of the properties included in the map unit descriptions.

Report—Map Unit Description (Brief, Generated)

Dallas County, Texas

Map Unit: 45—Houston Black-Urban land complex, 0 to 4 percent slopes

Component: Houston Black (55%)
The Houston Black component makes up 55 percent of the map unit. Slopes are 0 to 4 percent. This component is on circular gilgai on ridges on dissected plains. The parent material consists of residuum weathered from calcareous shale of Taylor Marl and Eagleford Shale. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is very high. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 3 percent. This component is in the R086AY010TX Northern Blackland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 25 percent. There are no saline horizons within 30 inches of the soil surface.

Component: Urban land (35%)

Generated brief soil descriptions are created for major soil components. The Urban land is a miscellaneous area.

Component: Unnamed (10%)

Generated brief soil descriptions are created for major soil components. The Unnamed soil is a minor component.

Data Source Information

Soil Survey Area: Dallas County, Texas
Survey Area Date: Version 17, Sep 12, 2019
Appendix A
National Wetland Inventory Map

Brandywine Apartments
500 Rockingham Drive
Richardson, Texas

USFWS National Wetlands Inventory

DOMINION
DUE DILIGENCE
GROUP

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or completeness of the base data shown on this map. All wetland-related data should be used in accordance with the user metadata found on the Wetlands Mapper website.
APPENDIX B

Site Plan
Appendix B
Site Plan

Brandywine Apartments
500 Rockingham Drive
Richardson, Texas

DOMINION DUE DILIGENCE GROUP
APPENDIX C

Site Photographs
Brandywine Apartments
Richardson, Texas

PHOTO #1
Subject property signage

PHOTO #2
Subject property exterior
Brandywine Apartments
Richardson, Texas

PHOTO #3
Subject property exterior

PHOTO #4
Subject property exterior
Brandywine Apartments
Richardson, Texas

PHOTO #5
Typical unit kitchen

PHOTO #6
Typical unit living room
Brandywine Apartments
Richardson, Texas

PHOTO #7

Typical unit bedroom

PHOTO #8

Typical unit bathroom
Brandywine Apartments
Richardson, Texas

PHOTO #9
Leasing office

PHOTO #10
Community room
PHOTO #11
Community kitchen

PHOTO #12
Laundry facility
Brandywine Apartments
Richardson, Texas

PHOTO #13
Maintenance area

PHOTO #14
Dumpster area
PHOTO #15

Pad-mounted electrical transformer not affixed with a Non-PCB sticker

PHOTO #16

Community garden
Brandywine Apartments
Richardson, Texas

PHOTO #17
Northern adjacent single-family residential

PHOTO #18
Eastern adjacent single-family residential
PHOTO #19

Southern adjacent Northrich Baptist Church

PHOTO #20

Southern adjacent undeveloped grassed land
APPENDIX D

Historical Research Documents
Brandywine Apartments
500 Rockingham Drive
Richardson, TX 75080

Inquiry Number: 5317230.3
May 31, 2018

Certified Sanborn® Map Report
Certified Sanborn® Map Report

Site Name: Brandywine Apartments
500 Rockingham Drive
Richardson, TX 75080
EDR Inquiry # 5317230.3

Client Name: Dominion Environmental Group, Inc
201 Wylderose Drive
Midlothian, VA 23113
Contact: Elizabeth Fulmer

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Dominion Environmental Group, Inc were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 4368-46D1-8925
PO # NA
Project Brandywine Apartments

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Limited Permission To Make Copies

Dominion Environmental Group, Inc (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice. Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.
The EDR Aerial Photo Decade Package

Brandywine Apartments
500 Rockingham Drive
Richardson, TX 75080

Inquiry Number: 5317230.5
May 31, 2018
Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR’s professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

<table>
<thead>
<tr>
<th>Year</th>
<th>Scale</th>
<th>Details</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>1”=500’</td>
<td>Flight Year: 2016</td>
<td>USDA/NAIP</td>
</tr>
<tr>
<td>2012</td>
<td>1”=500’</td>
<td>Flight Year: 2012</td>
<td>USDA/NAIP</td>
</tr>
<tr>
<td>2008</td>
<td>1”=500’</td>
<td>Flight Year: 2008</td>
<td>USDA/NAIP</td>
</tr>
<tr>
<td>2005</td>
<td>1”=500’</td>
<td>Flight Year: 2005</td>
<td>USDA/NAIP</td>
</tr>
<tr>
<td>1995</td>
<td>1”=500’</td>
<td>Acquisition Date: March 08, 1995</td>
<td>USGS/DOQQ</td>
</tr>
<tr>
<td>1990</td>
<td>1”=500’</td>
<td>Flight Date: August 01, 1990</td>
<td>USGS</td>
</tr>
<tr>
<td>1989</td>
<td>1”=500’</td>
<td>Flight Date: October 03, 1989</td>
<td>USGS</td>
</tr>
<tr>
<td>1981</td>
<td>1”=500’</td>
<td>Flight Date: September 21, 1981</td>
<td>USDA</td>
</tr>
<tr>
<td>1979</td>
<td>1”=500’</td>
<td>Flight Date: November 11, 1979</td>
<td>USDA</td>
</tr>
<tr>
<td>1972</td>
<td>1”=500’</td>
<td>Flight Date: February 13, 1972</td>
<td>USDA</td>
</tr>
<tr>
<td>1968</td>
<td>1”=500’</td>
<td>Flight Date: September 19, 1968</td>
<td>USGS</td>
</tr>
<tr>
<td>1958</td>
<td>1”=500’</td>
<td>Flight Date: January 26, 1958</td>
<td>ASCS</td>
</tr>
<tr>
<td>1950</td>
<td>1”=500’</td>
<td>Flight Date: December 11, 1950</td>
<td>USDA</td>
</tr>
<tr>
<td>1942</td>
<td>1”=500’</td>
<td>Flight Date: March 21, 1942</td>
<td>USDA</td>
</tr>
</tbody>
</table>

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.
APPENDIX E

Regulatory Records Documentation
Search Summary Report

TARGET SITE
500 Rockingham Drive
Richardson, TX 75080

Category	**Sel**	**Site**	**1/8**	**1/4**	**1/2**	**> 1/2**	**ZIP**	**TOTALS**
NPL | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
NPL Delisted | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
CERCLIS | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
NFRAAP | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
RCRA COR ACT | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
RCRA TSD | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
RCRA GEN | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
Federal IC / EC | Y | 0 | 0 | - | - | - | 0 | 0
ERNS | Y | 0 | 0 | - | - | - | 0 | 0
State/Tribal NPL | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
State/Tribal SWL | Y | 0 | 0 | 0 | 0 | 0 | 0 | 0
State/Tribal LTANKS | Y | 0 | 0 | 2 | 2 | - | 0 | 4
State/Tribal Tanks | Y | 0 | 0 | 2 | - | - | 0 | 2
State/Tribal IC / EC | Y | 0 | 0 | - | - | - | 0 | 0
State/Tribal VCP | Y | 0 | 1 | 0 | 0 | - | 0 | 1
ST/Tribal Brownfields | Y | 0 | 0 | 0 | 0 | - | 0 | 0
US Brownfields | Y | 0 | 0 | 0 | 0 | - | 0 | 0
Other SWF | Y | 0 | 0 | 0 | 0 | - | 0 | 0
Other Haz Sites | Y | 0 | - | - | - | 0 | 0 | 0
Local Land Records | Y | 0 | 0 | - | - | - | 0 | 0
Spills | Y | 0 | 0 | - | - | - | 0 | 0
Other | Y | 0 | 0 | 0 | - | - | 0 | 0
- Totals -- | 0 | 1 | 4 | 2 | 0 | 0 | 7

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.
Search Summary Report

TARGET SITE: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

Category Database Update Radius Site 1/8 1/4 1/2 > 1/2 ZIP TOTALS

<table>
<thead>
<tr>
<th>Category</th>
<th>Database</th>
<th>Update</th>
<th>Radius</th>
<th>Site</th>
<th>1/8</th>
<th>1/4</th>
<th>1/2</th>
<th>> 1/2</th>
<th>ZIP</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPL</td>
<td>NPL</td>
<td>10/25/2019</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NPL</td>
<td>Proposed NPL</td>
<td>10/25/2019</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NPL Delisted</td>
<td>Delisted NPL</td>
<td>10/25/2019</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CERCLIS</td>
<td>FEDERAL FACILITY</td>
<td>04/03/2019</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NFRAP</td>
<td>SEMS ARCHIVES</td>
<td>10/25/2019</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VCP</td>
<td></td>
<td>07/03/2019</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ST/Tribal IC / EC</td>
<td>BROWNFIELDS</td>
<td>06/06/2019</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US Brownfields</td>
<td>US BROWNFIELDS</td>
<td>06/03/2019</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other SWF</td>
<td>SWRCY</td>
<td>08/16/1999</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Haz Sites</td>
<td>CDL</td>
<td>08/07/2017</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Haz Sites</td>
<td>PRIORITYCLEANERS</td>
<td>02/25/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Local Land Records</td>
<td>LIENS</td>
<td>07/03/2019</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spills</td>
<td>SPILLS</td>
<td>08/09/2019</td>
<td>0.125</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>RCRA NonGen / NLR</td>
<td>06/24/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>RADINFO</td>
<td>07/01/2019</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>INDIAN RESERV</td>
<td>12/31/1998</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>LEAD SMELTERS</td>
<td>10/25/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>AIRS</td>
<td>04/05/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>DRYCLEANERS</td>
<td>08/06/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>LEAD</td>
<td>05/28/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>NAVY</td>
<td>07/08/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET SITE: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

Category Database Update Radius Site 1/8 1/4 1/2 > 1/2 ZIP TOTALS

<table>
<thead>
<tr>
<th>Category</th>
<th>Database</th>
<th>Update</th>
<th>Radius</th>
<th>Site</th>
<th>1/8</th>
<th>1/4</th>
<th>1/2</th>
<th>ZIP</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWF / Brownfields</td>
<td>US BROWNFIELDS</td>
<td>06/03/2019</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Local Land Records</td>
<td>LIENS</td>
<td>07/03/2019</td>
<td>0.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spills</td>
<td>SPILLS</td>
<td>08/09/2019</td>
<td>0.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>RCRA NonGen / NLR</td>
<td>06/24/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>RADINFO</td>
<td>07/01/2019</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>INDIAN RESERV</td>
<td>12/31/1998</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>LEAD SMELTERS</td>
<td>10/25/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>AIRS</td>
<td>04/05/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>DRYCLEANERS</td>
<td>08/06/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>LEAD</td>
<td>05/28/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>NAVY</td>
<td>07/08/2019</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Totals -- 0 1 4 2 0 0 7
Site Information Report

Request Date: NOVEMBER 22, 2019
Request Name: ELIZABETH FULMER
Job Number: TEAM 1

Target Site: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

Federal EPA Radon Zone for DALLAS County: 3
Note: Zone 1 indoor average level > 4 pCi/L.
Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.
Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 75080
Number of sites tested: 6

Demographics
Sites: 7 Non-Geocoded: 0 Population: N/A

Federal Area Radon Information for Zip Code: 75080
Number of sites tested: 6

<table>
<thead>
<tr>
<th>Area</th>
<th>Average Activity</th>
<th>% <4 pCi/L</th>
<th>% 4-20 pCi/L</th>
<th>% >20 pCi/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Living Area - 1st Floor</td>
<td>2.133 pCi/L</td>
<td>83%</td>
<td>17%</td>
<td>0%</td>
</tr>
<tr>
<td>Living Area - 2nd Floor</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Basement</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>

Federal Area Radon Information for DALLAS COUNTY, TX
Number of sites tested: 82

<table>
<thead>
<tr>
<th>Area</th>
<th>Average Activity</th>
<th>% <4 pCi/L</th>
<th>% 4-20 pCi/L</th>
<th>% >20 pCi/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Living Area - 1st Floor</td>
<td>1.183 pCi/L</td>
<td>96%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>Living Area - 2nd Floor</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Basement</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>

Site Location

<table>
<thead>
<tr>
<th>Degrees (Decimal)</th>
<th>Degrees (Min/Sec)</th>
<th>UTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude: 96.735802</td>
<td>96°44'8.88"</td>
<td>Easting: 711621.6</td>
</tr>
<tr>
<td>Latitude: 32.965458</td>
<td>32°57'55.64"</td>
<td>Northing: 3649542.5</td>
</tr>
<tr>
<td>Elevation: 643 ft. above sea level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of sites tested: 82

<table>
<thead>
<tr>
<th>County</th>
<th>Mean</th>
<th>Total Sites</th>
<th>% >4 pCi/L</th>
<th>% >20 pCi/L</th>
<th>Min pCi/L</th>
<th>Max pCi/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>DALLAS</td>
<td>1.2</td>
<td>95</td>
<td>3.2</td>
<td>0</td>
<td><5</td>
<td>6.8</td>
</tr>
</tbody>
</table>
No sites found for target address
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
JOB: TEAM 1
VCP

<table>
<thead>
<tr>
<th>EDR ID:</th>
<th>DIST/DIR:</th>
<th>ELEVATION:</th>
<th>MAP ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>104411388</td>
<td>0.078 SW 640</td>
<td>640</td>
<td>1</td>
</tr>
</tbody>
</table>

NAME: CAMELOT SHOPPING CENTER
Address: 580 W ARAPAHO RD
City, State, Zip: RICHARDSON, TX 75080
SOURCE: TX Texas Commission on Environmental Quality

- **Contact Telephone:** (972) 931-4000
- **Mailing Address:** PO BOX 796023

VCP TCEO:
- **Name:** CAMELOT SHOPPING CENTER
- **City, State, Zip:** RICHARDSON, TX 75080

Program ID: 1158
Remedy Type: VCP

- **Applicant:** HOPPENSTEIN PROPERTIES INC
- **Role Code:** BILLCONT

Standards: 3
Surface Water Target COC Class: Not reported
Leaking Petroleum Storage Registration Tank: Not reported
Project Number: 331580
** alternate VCP ID:** 1158
Surface Water REM Method: Not reported
Lower Water REM Method: Not reported
Soil Target COC Class: CHLORINATED SOLVENTS
GW Target COC Class: CHLORINATED SOLVENTS

- **Date Cashier Check Received:** 03/13/2000
- **Application Accepted Date:** 03/27/2000

**- Continued on next page -

Contact Telephone: (972) 931-4000
Alternate VCP ID: 1158
Leaking Petroleum Storage Registration Tank: Not reported
Project Number: 331580
Date Cashier Check Received: 03/13/2000
Application Accepted Date: 03/27/2000

Soil Target COC Class: CHLORINATED SOLVENTS
GW Target COC Class: CHLORINATED SOLVENTS

- **Date Cashier Check Received:** 03/13/2000
- **Application Accepted Date:** 03/27/2000
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

JOB: TEAM 1

UST

EDR ID: U001253567 DIST/DIR: 0.163 SSW ELEVATION: 631 MAP ID: A2

NAME: ARAPAHO CAR WASH

ADDRESS: 535 W ARAPAHO RD
RICHARDSON, TX 75080

SOURCE: TX Texas Commission on Environmental Quality

UST:

Name: ARAPAHO CAR WASH
City,State,Zip: RICHARDSON, TX 750804340
Al Number: 18633
Facility Type: OTHER
Facility Begin Date: 09/03/1986
Facility Status: INACTIVE
Additional ID: 413662202002062
Facility Exempt Status: N

Owner Type: CO
Owner First Name: Not reported
Owner Last Name: TRINITY CAR WASH INC
Owner CN: CN600826044
Owner Effective Begin Date: 06/12/2000
AI Number: 18633
Additional ID: 413662202002062

Facility ID: 56470
UST ID: 48420
Pipe Type: Not reported
Tank Doublewall: N
Tank Singlewall: N
Tank Capacity: 3000
Number of Compartments: 1
Tank Registration Date: 05/08/1986
Install Date: 01/01/1980
Tank Regulatory Status: FULLY REGULATED
Tank Int Prot (Internal Tank Lining Date): Not reported
Piping Design (Double Wall): N
Piping Design (Single Wall): N

Tank Status (Current): REMOVED FROM GROUND
Tank Status Date: 02/10/1998
Empty: N

Contact Name/Title: / Contact Role: Not reported
Contact Address Deliverable: Not reported
Contact Mailing City/State/Zip: Not reported
Contact Mailing Address1: Not reported
Contact Mailing City: Not reported
Contact Mailing State: Not reported
Contact Mailing Zip5: Not reported
Contact Mailing Zip: Not reported
Contact Email Address: Not reported
Contact Fax Number/Ext: / Contact Fax Country Code: Not reported
Contact Phone Number/Ext: / Contact Phone Country Code: Not reported

- Continued on next page -
Site Detail Report

Target Property: 500 Rockingham Drive

JOB: TEAM 1

UST ID: U001253567 0.163 SSW 631 A2

EDR ID: DIST/DIR: ELEVATION: MAP ID:

ARAPAHO CAR WASH

535 W Arapaho Rd

Richardson, TX 75080

SOURCE: TX Texas Commission on Environmental Quality

- **Installation Signature Date:** Not reported
- **Compartment Records:**
 - **Tank ID:** 3
 - **Tank Capacity:** 3000
 - **UST ID:** 48420
 - **AI Number:** 18633
 - **Compartment ID:** A

- **Compartment Artificial Number:** 2

- **Compartment Release Detection Method:** Vapor

- **Spill Overfill Prevention Equipment (SOPE):**
 - **SOPE:** (Split-Contributed-Sump)
 - **Flow Restrictor Value:**
 - **Flow Shut-Off Valve:**

- **PRDM (Process Loss Detection):**
 - **Auto Line Leak Detection:**
 - **Monthly Piping Tightness Test:**
 - **Secondary Containment Monitoring:**

- **CRDM (Communications):**
 - **Auto Tank Gauge Test:**
 - **Monthly Piping Tightness Test:**

- **Compartment Release Detection:**
 - **Compartment 1:**

- **Substance Stored:**
 - **Substance Stored 1:** DIESEL
 - **Substance Stored 2:** Not reported

- **Installation Date:** 01/01/1968

- **Number of Compartments:** 1

- **Tank Capacity:** 6000

- **Pipe Type:** Not reported

- **UST ID:** 48422

- **Facility ID:** 56470

- **AI Number:** 18633

** note: Document continues on next page **
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080
JOB: TEAM 1
UST
EDR ID: U001253567
DIST/DIR: 0.163 SSW
ELEVATION: 631
MAP ID: A2

UST Details

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>ARAPAHO CAR WASH</td>
</tr>
<tr>
<td>Address</td>
<td>535 W ARAPAHO RD RICHARDSON, TX 75080</td>
</tr>
<tr>
<td>Source</td>
<td>TX Texas Commission on Environmental Quality</td>
</tr>
<tr>
<td>Rev</td>
<td>U001253567 0.163 SSW 631 A2</td>
</tr>
<tr>
<td>Tank Id</td>
<td>1</td>
</tr>
<tr>
<td>Tank Status (Current)</td>
<td>REMOVED FROM GROUND</td>
</tr>
<tr>
<td>Empty</td>
<td>N</td>
</tr>
<tr>
<td>Tank Regulatory Status</td>
<td>FULLY REGULATED</td>
</tr>
<tr>
<td>Tank Int Prot (Internal Tank Lining Date)</td>
<td>Not reported</td>
</tr>
<tr>
<td>Piping Design (Single Wall)</td>
<td>N</td>
</tr>
<tr>
<td>Piping Design (Double Wall)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont/(aa-Built Nonmetallic Jacket)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont/Syn Tank-Piping-Trench Liner</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont/Tank Vault/Rigid Trench Liner</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont/Syn Tank-Piping-Trench Liner</td>
<td>N</td>
</tr>
<tr>
<td>Tank Material (Steel)</td>
<td>Y</td>
</tr>
<tr>
<td>Tank Material/FrP/Fiberglass-Reinforced Plastic</td>
<td>N</td>
</tr>
<tr>
<td>Tank Mat/(Composite (Steel W/Ext Frp Cladding))</td>
<td>N</td>
</tr>
<tr>
<td>Tank Mat/(Concrete)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Mat/(Jacketed (Steel W/Ext Nonmetallic Jck))</td>
<td>N</td>
</tr>
<tr>
<td>Tank Mat/(Coated (Steel W/Ext Polyurethane Cladding))</td>
<td>N</td>
</tr>
<tr>
<td>Piping Material (Steel)</td>
<td>Y</td>
</tr>
<tr>
<td>Piping Material (Fiberglass-Reinforced Plastic)</td>
<td>N</td>
</tr>
<tr>
<td>Piping Mat/(Concrete)</td>
<td>N</td>
</tr>
<tr>
<td>Piping Mat/(Jacketed (Steel W/Ext Nonmetallic Jck))</td>
<td>N</td>
</tr>
<tr>
<td>Piping Mat/(Coated (Steel W/Ext Polyurethane Cladding))</td>
<td>N</td>
</tr>
<tr>
<td>Tank Corr Prot Meth/(TCPM) (Cathodic-Field Installation)</td>
<td>N</td>
</tr>
<tr>
<td>TCPM (ExxDielectricCoatLaminate/Tape/Wrap)</td>
<td>N</td>
</tr>
<tr>
<td>TCPM/Cathodic Prot/FacInstallation</td>
<td>N</td>
</tr>
<tr>
<td>TCPM/Composite Tank/(Steel W/Frp Ext Laminates)</td>
<td>N</td>
</tr>
<tr>
<td>TCPM/Coated Tank/(Steel W/Ext Polyurethane Laminates)</td>
<td>N</td>
</tr>
<tr>
<td>TCPM/FRP Tank Or Piping/(Noncorrodbile)</td>
<td>N</td>
</tr>
<tr>
<td>TCPM/(Ext Nonmetallic Jacket)</td>
<td>N</td>
</tr>
<tr>
<td>TCPM/(Unnecessary Per Corrosion Prot Spec)</td>
<td>N</td>
</tr>
<tr>
<td>Piping Corr Prot Meth/(Dielectric Coat/Laminate/Tape/Wrap)</td>
<td>N</td>
</tr>
<tr>
<td>Piping Corr Prot Method/(PCPM) (Cathodic Factory Install)</td>
<td>N</td>
</tr>
<tr>
<td>PCPM/(Cathodic Prot-Fab Install)</td>
<td>N</td>
</tr>
<tr>
<td>PMP/(FRP Tank Or Piping)/(Noncorrodbile)</td>
<td>N</td>
</tr>
<tr>
<td>PCPM/(Nonmetallic FlexPiping) (Noncorrodbile)</td>
<td>N</td>
</tr>
<tr>
<td>PCPM/(Isolated Open Area/2nd Containment)</td>
<td>N</td>
</tr>
<tr>
<td>PCPM/(Dual Protected)</td>
<td>N</td>
</tr>
<tr>
<td>PCPM/(Unnée Per Corrosion Prot Specialist)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Corr Prot Compliance Flag</td>
<td>N</td>
</tr>
</tbody>
</table>

- Continued on next page -
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
JOB: TEAM 1

UST

EDR ID: U001253567
DIST/DIR: 0.163 SSW
ELEVATION: 631
MAP ID: A2

| NAME: | ARAPAHO CAR WASH
| ADDRESS: | 535 W ARAPAHO RD, RICHARDSON, TX 75080
| SOURCE: | TX Texas Commission on Environmental Quality

| ID/Status: | INACTIVE
| ID/Status: | 18633
| ID/Status: | 56470
| ID/Status: | 413662202002062

Install Date: 01/01/1968
Number of Compartments: 1
Tank Capacity: 6000
Tank Singlewall: N
Tank Doublewall: N
Pipe Type: Not reported
UST ID: 48421
Facility ID: 56470
A/Number: 18633
Tank Id: 2
Tank Status (Current): REMOVED FROM GROUND
Tank Status Date: 02/10/1998
Empty: N
Tank Regulatory Status: FULLY REGULATED
Tank Int Prot (Internal Tank Lining Date): Not reported
Piping Design (Single Wall): N
Piping Design (Double Wall): N
Tank Ext Cont(Fab-Built Nonmetallic Jacket): N
Tank Ext Cont(Syn Tank-Piping/Trench Liner): N
Tank Ext Cont(Tank Vault/Rigid Trench Liner): N
Piping Ext Cont(Fab-Built Nonmetallic Jacket): N
Piping Ext Cont(Syn Tank-Piping/Trench Liner): N
Piping Ext Cont(Tank Vault/Rigid Trench Liner): N
Tank Material (Steel): Y
Tank Material(FrP/Fiberglass-Reinforced Plastic): N
Tank Mat(Composite (Steel W/Ext Frp Cladding)): N
Tank Mat(Concrete): N
Tank Mat(Jacketed (Steel W/Ext Nonmetallic Jck)): N
Tank Mat(Coated (Steel W/Ext Polyurethane Cladding)): N
Piping Material (Steel): Y
Piping Mat(FrP/Fiberglass Reinforced Plastic): N
Piping Mat(Concrete): N
Piping Mat(Jacketed (Steel W/Ext Nonmetallic Jck)): N
Piping Mat(Nonmetallic Flex Piping): N
Piping Connect/Valves (Shear Impact Valves Under Disip): N
Piping Connect/Valves (Steel Swing-Joints End Of Piping): N
Piping Connect/Valves (Flex Connectors Ends Of Piping): N

- Continued on next page -
UST

<table>
<thead>
<tr>
<th>EDR ID</th>
<th>DIST/DIR</th>
<th>ELEVATION</th>
<th>MAP ID</th>
<th>NAME</th>
<th>ADDRESS</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U001253567</td>
<td>0.163 SSW</td>
<td>631</td>
<td>A2</td>
<td>ARAPAHO CAR WASH</td>
<td>535 W ARAPAHO RD</td>
<td>TX Texas Commission on Environmental Quality</td>
</tr>
<tr>
<td>Rev:</td>
<td>06/03/2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID/Status:</td>
<td>INACTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID/Status:</td>
<td>18633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID/Status:</td>
<td>56470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID/Status:</td>
<td>413662202002062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LPST

<table>
<thead>
<tr>
<th>EDR ID</th>
<th>DIST/DIR</th>
<th>ELEVATION</th>
<th>MAP ID</th>
<th>NAME</th>
<th>ADDRESS</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U001253567</td>
<td>0.163 SSW</td>
<td>631</td>
<td>A2</td>
<td>ARAPAHO CAR WASH</td>
<td>535 W ARAPAHO RD</td>
<td>TX Texas Commission on Environmental Quality</td>
</tr>
<tr>
<td>Rev:</td>
<td>06/04/2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID/Status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID/Status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID/Status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facility Billing Contacts:
- Contact Organization Name: TRINITY CAR WASH INC
- Contact Mailing Address (Delivery): 535 W ARAPAHO RD, RICHARDSON, TX 75080
- Contact Mailing Address (Internal Delivery): Not reported
- Contact Mailing City/State/Zip: RICHARDSON, TX 75080 4340
- Phone Number/Ext: /
- Contact Fax Number/Ext: /
- Contact Email Address: Not reported
- Contact Address Deliverable: Y
- Facility ID: 56470
- Additional ID: 413662202002062
- Print ID: 422662192002062
- At Number: 18633
- Facility Name: ARAPAHO CAR WASH
- AR Number: Not reported
- AR UST Number Suffix: Not reported
- AR AST Number Suffix: Not reported
- Contact Name/Title: /

Facility Information:
- **Stage 1 Installation Date:** Not reported
- **Spill/Overfill Prevention Equipment (SOPE):** N
- **Piping Release Detection Compliance Flag:** N
- **Compartment Release Detection Compliance Flag:** N
- **Spill And Overfill Prevention Variance:** N
- **Stage 1 Vapor Recovery:** Not reported
- **Stage 1 Installation Date:** Not reported

Facility Details:
- **Program:** 1 - RPR
- **Priority Description:** Groundwater is affected.
- **Status:** FINAL CONCURRENCE PENDING DOCUMENTATION OF WELL PLUGGING
- **Coordinators:** Primary: 1/2
- **Coordinators:** RPR: /
- **Facility Location:** 535 W ARAPAHO
- **TCEQ Region** and City: REGION 04 - DFW METROPOLIS
- **Region City:** ARLINGTON
- **Reported Date:** 12/04/1987
- **Entered Date:** 01/30/1992
- **Priority:** 4.1 - GW IMPACTED NO APPARENT THREATS OR IMPACTS TO RECEPTORS
- **CA Status:** 6A - FINAL CONCURRENCE ISSUED
- **Reported Date:** 01/09/1992
- **Case Start Date:** 01/09/1992
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080
JOB: TEAM 1

UST

<table>
<thead>
<tr>
<th>EDR ID:</th>
<th>DIST/DIR:</th>
<th>ELEVATION:</th>
<th>MAP ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>U001250858</td>
<td>0.172 SW</td>
<td>631</td>
<td>A3</td>
</tr>
</tbody>
</table>

NAME: ARAPAHO FINA
ADDRESS: 555 W ARAPAHO RD
RICHARDSON, TX 75080
SOURCE: TX Texas Commission on Environmental Quality

UST:
Finance Assurance Required: Yes
Number Of Active UST: 4
Location Description: Not reported

Facility Information:
Begin Date: 12/01/1982
Type: RETAIL
Status: ACTIVE

Contact Information:
Name: BABY ABRAHAM/PRESIDENT
Telephone: 972-974-1087
Fax: Not reported
Email: Not reported
City: RICHARDSON
State: TX
Zip: 75080

Additional Information:
Operator CN: CN602760084
Owner CN: CN9002790084
Owner Last Name: BENIKS CORPORATION
Owner Type: CO

- Continued on next page -
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
JOB: TEAM 1

<table>
<thead>
<tr>
<th>EDR ID</th>
<th>DIST/DIR</th>
<th>ELEVATION</th>
<th>MAP ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>U001250858</td>
<td>0.172 SW</td>
<td>631</td>
<td>A3</td>
</tr>
</tbody>
</table>

NAME: ARAPAHO FINA
ADDRESS: 555 W ARAPAHO RD, RICHARDSON, TX 75080
SOURCE: TX Texas Commission on Environmental Quality

- **AI Number:** 15582
- **Self Certification Date:** 06/03/2019
- **Signature Name/Title:** BABY ABRAHAM PRES
- **Cert ID:** 37956
- **Self Cert ID:** 37956
- **Spill Prevention/Overfill Compliance:** Y

- **AI Number:** 15582
- **Self Certification Date:** 06/03/2019
- **Signature Name/Title:** BABY ABRAHAM PRES
- **Cert ID:** 37956
- **Self Cert ID:** 37956
- **Spill Prevention/Overfill Compliance:** Y

- **AI Number:** 15582
- **Self Certification Date:** 06/03/2019
- **Signature Name/Title:** BABY ABRAHAM PRES
- **Cert ID:** 37956
- **Self Cert ID:** 37956
- **Spill Prevention/Overfill Compliance:** Y

- Continued on next page -
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

JOB: TEAM 1

<table>
<thead>
<tr>
<th>EDR ID</th>
<th>DIST/DIR</th>
<th>ELEVATION</th>
<th>MAP ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>U001250858</td>
<td>0.172 SW</td>
<td>631</td>
<td>A3</td>
</tr>
</tbody>
</table>

NAME: APAPAHO FINA

- Rev: 05/03/2019
- ID/Status: ACTIVE
- ID/Status: 15582
- ID/Status: 37956
- ID/Status: 152731352002062

ADDRESS: 555 W ARAPAHO RD
RICHARDSON, TX 75080

SOURCE: TX Texas Commission on Environmental Quality

Spill Prevention/Overfill Compliance: Y

Piping Release Detection Compliance: Y

Compartment Release Detection Compliance: Y

Piping Corrosion Protection Compliance: Y

Tank Corrosion Protection Compliance: Not reported

Reporting Method: Y

Technical Standards Self Certification Flag: Y

Financial Assurance Self Certification Flag: Y

Delivery Certificate Expiration Date: 10/31/2014

Reporting Method: P

Tank Corrosion Protection Compliance: Not reported

Compartment Release Detection Compliance: Not reported

Piping Corrosion Protection Compliance: Not reported

Spill Prevention/Overfill Compliance: Not reported

Self Certification Date: 09/15/2011

AI Number: 15582
Cert ID: 1480

Self Certification Date: 10/31/2011

AI Number: 15582

Cert ID: 1480

Self Certification Date: 09/15/2011

AI Number: 15582

Cert ID: 1480

- **Continued on next page** -
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080
JOB: TEAM 1

UST

EDR ID: U001250858
DIST/DIR: 0.172 SW
ELEVATION: 631
MAP ID: A3

NAME: ARAPAHO FINA
Revs: 06/03/2019
ID/Status: ACTIVE
ID/Status: 15582
ID/Status: 37956
ID/Status: 152731352002062

ADDRESS:
555 W ARAPAHO RD
RICHARDSON, TX 75080

SOURCE: TX Texas Commission on Environmental Quality

Delivery Certificate Expiration Date: 10/31/2010
Reporting Method: Not reported
Tank Corrosion Protection Compliance: Not reported
Piping Corrosion Protection Compliance: Not reported
Compartment Release Detection Compliance: Not reported
Spill Prevention/Overfill Compliance: Not reported

Self Cert ID: 37956
Cert ID: 1479
AI Number: 15582
Self Certification Date: 09/28/2008
Signature Name/Title: BABY ABRAHAM PRES
Signature Type Role: OWNER
Filing Status: RENEWAL
Registration Self Certification Flag: Y
Facility Fees Self Certification Flag: Y
Financial Assurance Self Certification Flag: Y
Technical Standards Self Certification Flag: Y
Delivery Certificate Expiration Date: 10/31/2009
Reporting Method: Not reported
Tank Corrosion Protection Compliance: Not reported
Piping Corrosion Protection Compliance: Not reported
Compartment Release Detection Compliance: Not reported
Spill Prevention/Overfill Compliance: Not reported

Self Cert ID: 37956
Cert ID: 1477
AI Number: 15582
Self Certification Date: 01/30/2006
Signature Name/Title: BABY ABRAHAM PRES
Signature Type Role: OWNER
Filing Status: RENEWAL
Registration Self Certification Flag: Y
Facility Fees Self Certification Flag: Y
Financial Assurance Self Certification Flag: Y
Technical Standards Self Certification Flag: Y
Delivery Certificate Expiration Date: 10/31/2007
Reporting Method: Not reported
Tank Corrosion Protection Compliance: Not reported
Piping Corrosion Protection Compliance: Not reported
Compartment Release Detection Compliance: Not reported
Spill Prevention/Overfill Compliance: Not reported

Self Cert ID: 37956
Cert ID: 1479
AI Number: 15582
Self Certification Date: 10/05/2004
Signature Name/Title: J BABY ABRAHAM PRES
Signature Type Role: LEGAL AUTH REP OWNER
Filing Status: INITIAL

- Continued on next page -
<table>
<thead>
<tr>
<th>EDR ID: U001250858</th>
<th>DIST/DIR: 0.172 SW</th>
<th>ELEVATION: 631</th>
<th>MAP ID: A3</th>
</tr>
</thead>
</table>

NAME: ARAPAHO FINA
ADDRESS: 555 W ARAPAHO RD
SOURCE: TX Texas Commission on Environmental Quality
ID/Status: ACTIVE
Rev: 05/03/2019
ID/Status: 15582
ID/Status: 37956
ID/Status: 152731352002062
Self Cert ID: 37956
Cert ID: 1474
AI Number: 15582
Self Certification Date: 01/12/2004
Signature Name/Title: SHELLY PETERS PRESIDENT
Filing Status: RENEWAL
Registration Self Certification Flag: Y
Facility Fees Self Certification Flag: Y
Financial Assurance Self Certification Flag: Y
Technical Standards Self Certification Flag: Y
Delivery Certificate Expiration Date: 02/26/2005
Reporting Method: Not reported
Tank Corrosion Protection Compliance: Not reported
Piping Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported
Self Cert ID: 37956
Cert ID: 1473
AI Number: 15582
Self Certification Date: 04/16/2003
Signature Name/Title: SHELLY PETERS PRESIDENT
Filing Status: INITIAL
Registration Self Certification Flag: Y
Facility Fees Self Certification Flag: Y
Financial Assurance Self Certification Flag: Y
Technical Standards Self Certification Flag: Y
Delivery Certificate Expiration Date: 03/29/2002
Reporting Method: Not reported
Tank Corrosion Protection Compliance: Not reported
Piping Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported
Self Cert ID: 37956
Cert ID: 1471
AI Number: 15582
Self Certification Date: 04/25/2001
Signature Name/Title: SHELLY PETERS PRESIDENT
Filing Status: INITIAL
Registration Self Certification Flag: Y
Facility Fees Self Certification Flag: Y
Financial Assurance Self Certification Flag: Y
Technical Standards Self Certification Flag: Y
Delivery Certificate Expiration Date: 07/31/2002
Reporting Method: Not reported
Tank Corrosion Protection Compliance: Not reported
Piping Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported
Tank Corrosion Protection Compliance: Not reported

- Continued on next page -
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080
JOB: TEAM 1

UST

EDR ID: U001250858
DIST/DIR: 0.172 SW
ELEVATION: 631
MAP ID: A3

NAME: ARAPAHO FINA
Rev: 05/03/2019
ADDRESS: 555 W ARAPAHO RD
RICHARDSON, TX 75080
SOURCE: TX Texas Commission on Environmental Quality

Install Date: 12/01/1982
Tank Registration Date: 05/08/1986
Number of Compartments: 1
Tank Capacity: 9000
Tank Singlewall: Y
Tank Doublewall: N
Pipe Type: P
UST ID: 39953
Al Number: 15582
Tank Id: 4
Tank Status (Current): TEMP OUT OF SERVICE
Tank Status Date: 10/04/2018
Empty: Y
Tank Regulatory Status: FULLY REGULATED
Tank Int Prot (Internal Tank Lining Date): Not reported
Piping Design (Single Wall): Y
Piping Design (Double Wall): N
Tank Ext Cont/Fab-Built Nonmetallic Jacket: N
Tank Ext Cont/Syn Tank-Flt/Piping-Trench Liner: N
Tank Ext Cont/Tank/Void Rigid Trinch Liner: N
Tank Ext Cont/Syn Tank-Flt/Piping-Trench Liner: N
Tank Ext Cont/Tank/Void Rigid Trinch Liner: N
Tank Material (Steel): N
Tank Material/Frp/Fiberglass-Reinforced Plastic: Y
Tank Mat/Composite (Steel W/Ext Frp Cladding): N
Tank Mat/Concrete: N
Tank Mat/Jacketed (Steel W/Ext Nonmetallic Clck): N
Tank Mat/Coated (Steel W/Ext Polyurethane Cladding): N
Piping Material (Steel): N
Piping Material (Frp/Fiberglass-Reinforced Plastic): Y
Piping Mat/Concrete: N
Piping Mat/Jacketed (Steel W/Ext Nonmetallic Jacket): N
Piping Mat/Composites (Steel W/Ext Nonmetallic Jacket): N
Piping Mat/Nonmetallic Flexible Pipe: N
Piping Connect/Valves/Steel Swing-Joints (End Of Piping): N
Tank Corr Prot Meth/(TCPM)(Cathodic-Field Installation): N
TCPM (ExctElectroCoatLaminaterTape/WRapping): N
TCPM/Cathodic Prot-Fac/Installation: N
TCPM (Composite Tank) (Steel W/Fr Ext Laminate): N
TCPM (FRP Tank Or Piping) (Noncorroddible): Y
TCPM (Ext Nonmetallic Jacket): N

TCPM (Unnecessary Per Corrosion Prot Spec): N
Piping Corr Prot Meth (Dielectric Coat/Laminate/Tape/WRap): N
Piping Corr Prot Meth (PCPM)(Cathodic Factory Install): N
PCPM (Cathodic Prot-Fac Install): N
PCPM (FRP Tank Or Piping) (Noncorroddible): Y
PCPM (Nonmetallic Flex Piping) (Noncorroddible): N
PCPM (Isolated Open Area) (2nd Containment): N
PCPM (Dual Protected): N
PCPM (Unnec Per Corrosion Prot Specialist): N
Tank Corr Prot Compliance Flag: Y
Piping Corr Prot Compliance Flag: Y
Tank Corrosion Prot Variance: N
Piping Corr Prot Variance: N
Temp Out Of Service Compliance: Y
Technical Compliance Flag: Y
Tank Tested Flag: N
Installation Signature Date: 10/29/1990
Compartment Records:
Tank Id: 4
Tank Capacity: 9000
UST Contact ID: 47
UST ID: 39953
Al Number: 15582
Compartment ID: A
Compartment ID: B
Substance Stored 1: EMPTY
Substance Stored 2: Not reported
Substance Stored 3: Not reported
Compartment Release Detection Method (Vapor): N
CRDM (GW Monitoring): N
CRDM (Monitoring Of Secondary Cont Barrier): N
CRDM (Auto Tank Gauge Test) (In-Use Control): Y
CRDM (Inter/Inter Monitoring Sec/Wall) (In-Use): N
CRDM (Wly Manual Gauging Tanks<=1000 G): N
CRDM (Nbr Tank Gauging) (Emer Gen Tanks): N
CRDM (Svc Inter Rev Recon/Rev/In Use) (In-Use): N
Piping Release Detection Method (PRDM) (Vapor): N
PRDM (Groundwater Monitoring): Y
PRDM (Monitoring Sec Containment Barrier): N
PRDM (Monitoring Sec Containment Barrier) w/ Sec/Wall) (In-Use): N
PRDM (Any Piping Tightness Test) (1 Gph): N
PRDM (Annual Piping Tightness Test) (1 Gph): N
PRDM (Integrity Test) (Leak Test) (1 Gph): N
PRDM (Integrity Test) (1 Gph): N
PRDM (Integrity Test) (1 Gph): N
- Continued on next page -
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080
JOB: TEAM 1

<table>
<thead>
<tr>
<th>EDR ID</th>
<th>DIST/DIR</th>
<th>ELEVATION</th>
<th>MAP ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>U001250858</td>
<td>0.172 SW</td>
<td>631</td>
<td>A3</td>
</tr>
</tbody>
</table>

UST

NAME: ARAPAHO FINA
ADDRESS: 555 W ARAPAHO RD
RICHARDSON, TX 75080
SOURCE: TX Texas Commission on Environmental Quality
Rev: 06/03/2019

- **ID/Status:** ACTIVE
- **UST ID:** 39956
- **Facility ID:** 37956
- **AI Number:** 15582
- **Compartment ID:** 50

Pipe Type: P
Piping Mat: Concrete

<table>
<thead>
<tr>
<th>Component Type</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Mat (Concrete)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Mat (Composite (Steel W/Ext Frp Cladding))</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont (Tank Vault/Rigid Trench Liner)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont (Tank Vault/Rigid Flexible Liner)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont (Fac-Built Nonmetallic Jacket)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont (Fac-Built Nonmetallic Flexible)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont (Syn Tank-Pit/Piping-Trench Liner)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont (Syn Tank-Pit/Piping-Trench Liner)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont (Syn Tank-Pit/Piping-Trench Liner)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Ext Cont (Syn Tank-Pit/Piping-Trench Liner)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Material (Steel)</td>
<td>N</td>
</tr>
<tr>
<td>Tank Material (Frp/Fiberglass-Reinforced Plastic)</td>
<td>Y</td>
</tr>
<tr>
<td>Tank Mat (Concrete)</td>
<td>Y</td>
</tr>
</tbody>
</table>

Tank Status: IN USE
Tank Status Date: 12/01/1982
Stage 1 Installation Date: Not reported
Stage 1 Vapor Recovery: Not reported

Substance Stored: GASOLINE

- **Tank Capacity:** 8000
- **Number of Compartments:** 1
- **Installation Signature Date:** 10/29/1990
- **EID/Status:** 15582
- **AI Number:** 15582
- **Facility ID:** 37956
- **UST ID:** 39956

Continuous on next page
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

JOB: TEAM 1

UST

EDR ID: U001250858
DIST/DIR: 0.172 SW
ELEVATION: 631
MAP ID: A3

NAME: ARAPAHO FINA
Rev: 06/03/2019
ID/Status: ACTIVE
ID/Status: 15582
ID/Status: 37956
ID/Status: 152731352002062

ADDRESS: 555 W ARAPAHO RD
RICHARDSON, TX 75080

SOURCE: TX Texas Commission on Environmental Quality

5881240.2s Site Details Page - 27
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080
JOB: TEAM 1

UST

EDR ID: U001250858
DIST/DIR: 0.172 SW
ELEVATION: 631
MAP ID: A3

NAME: ARAPAHO FINA
Address: 555 W ARAPAHO RD
RICHARDSON, TX 75080
Source: TX Texas Commission on Environmental Quality

Rev: 06/03/2019
ID/Status: ACTIVE
ID/Status: 15582
ID/Status: 37956
ID/Status: 152731352002062

ID/Status: ACTIVE
ID/Status: 15582
ID/Status: 37956
ID/Status: 152731352002062

Compartment Records:
Tank ID: 2
Tank Capacity: 8000
UST Compr: ID: 49
UST ID: 39955
Alt Number: 15582
Compartment ID: A
Substance Stored1: GASOLINE
Substance Store2: Not reported
Substance Store3: Not reported

Compartment Release Detection Method (Vapor): N
CompartmenRelease Detection Method (Water): N
CompartmentRelease Detection Method (Soil): N

Tank Corrosion Prot Meth (TCPM) (Cathodic-Field Installation): N
Piping Connect/Valves (Flex Connectors (Ends Of Piping)): N
Piping Connect/Valves (Steel Swing-Joints (End Of Piping)): N

Piping Material (Nonmetallic Flex Piping): Y
Piping Material (Frp (Fiberglass Reinforced Plastic)): Y
Piping Material (Concrete): N
Piping Ext Cont (Tank Vault/Rigid Trench Liner): N
Piping Ext Cont (Syn Tank-Pit/Piping-Trench Liner): Y

Piping Material (Steel): N
Tank Material (Coated (Steel W/Ext Polyurethane Cladding)): Y
Tank Material (Composite (Steel W/Ext Frp Cladding)): Y
Tank Material (Concrete): N
Tank Material (Jacketed (Steel W/Ext Nonmetallic Jkt)): N
Tank Material (Coated/Steel W/Ext Nonmetallic Cladding): Y

Piping Release Detection Variance: N
Soil And Overfill Prevention Variance: N
Stage 1 Vapor Recovery: Not reported
Stage 1 Installation Date: Not reported

Install Date: 12/01/1982
Tank Registration Date: 05/08/1986
Number of Compartments: 1
Tank Capacity: 8000
Tank Singlewall: Y
Tank Doublewall: N
Pipe Type: P
UST ID: 39954
Facility ID: 37956
Alt Number: 15582

Stage 1 Installation Date: Not reported

- Continued on next page -
Site Detail Report

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

JOB: TEAM 1

UST

EDR ID: U001250858
DIST/DIR: 0.172 SW
ELEVATION: 631
MAP ID: A3

NAME: ARAPAHO FINA
Rev: 06/03/2019
ID/Status: ACTIVE
ID/Status: 15582
ID/Status: 37956
ID/Status: 152731352002062

ADDRESS: 555 W ARAPAHO RD
RICHARDSON, TX 75080

SOURCE: TX Texas Commission on Environmental Quality

PRDM(Monitoring Sec Containment Barrier): N
PRDM(Groundwater Monitoring): Y
CRDM(Sir (Stat Inv Reconciliation)/Inv Control): N
CRDM(Monitoring SecWall/Jacket): N
CRDM(Auto Tank Gauge Test/Inv Control): Y
CRDM(Monitoring Of Secondary Cont Barrier): N
CRDM(Interstitial Monitoring SecWall/Jacket): N
CRDM(Why Manual Gauging)(Tanks<=1000 G): N
CRDM(Mtr Tank Gauging)(Emer Gen Tanks): N
CRDM(Sir (Stat Inv Reconciliation/Inv Control): N
PIPR(Monitoring Sec Containment Barrier): N

TCPM(Telephone Nut/Brake/Lock/Wrench): N
TCPM(Cable/Bolt/Cable Lock): N
TCPM(Insulation): N
TCPM(Surrounding Wall): N
TCPM(Piping Gasket): N

PRDM(Exempt System Suction): N
PRDM(Mtrty Piping Tightness Test)(125Psi): N
PRDM(Annual Piping Tightness Test/Elecdet): Y
PRDM(Hiannual Piping Test/Suction/Gravity Piping)(10psi): N
PRDM(Auto Line Leak Detector)(3.0 Gph Press/Img): Y

Compartment Records:

Tank ID: 3
Tank Capacity: 8000
UST Compt ID: 48
UST ID: 39954
AI Number: 15582

Installation Signature Date: 10/29/1990

Facility Billing Contacts:
Contact Organization Name: BENIKS CORPORATION
Contact Mailing Address (Delivery): 555 W ARAPAHO RD
Contact Mailing Address (Internal Delivery): Not reported
Contact Mailing City/State/Zip: RICHARDSON, TX 75080 4340
Phone Number/Ext: 972 97410870
Contact Fax Number/Ext: /contact phone number
Contact Email Address: Not reported
Contact Address Deliverable: Y
Facility ID: 37956
Additional ID: 152731352002062
Print ID: 960481042004365
AI Number: 15582
Facility Name: ARAPAHO FINA
AR Number: 63550
AR UST Number Suffix: Not reported
AR AST Number Suffix: U
Contact Name/Title: BABY ABRAHAM

- Continued on next page -
SITE DETAIL REPORT

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

JOB: TEAM 1

LPST Id: 93527

EID/Status: 6A - FINAL CONCURRENCE ISSUED

Coordinators RPR: Not reported

Facility Location: Not reported

Program: 1 - RPR

Region City: Not reported

Case Start Date: 01/01/1986

Reported Date: 07/24/1989

Responsible Party Telephone: Not reported

Responsible Party City,St,Zip: Not reported

Reported Date: 04/03/1997

Priority Description: Not reported

Priority Status: Not reported

NAME: FORMER MOBIL 12F1Y

ADDRESS: 507 W ARAPAHO RD
RICHARDSON, TX 75080

LPST: FORMER MOBIL 12F1Y

City,State,Zip: RICHARDSON, TX

Facility Id: Not reported

Procedure: 1 - RPR

Region City: Not reported

Case Start Date: 01/01/1986

Reported Date: 07/24/1989

Priority Description: Not reported

Priority Status: Not reported

SITE DETAIL REPORT

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

JOB: TEAM 1

LPST Id: U001252708

EID/Status: 6A - FINAL CONCURRENCE ISSUED

Coordinators RPR: Not reported

Facility Location: Not reported

Program: 1 - RPR

Region City: Not reported

Case Start Date: 01/01/1986

Reported Date: 07/24/1989

Responsible Party Telephone: Not reported

Responsible Party City,St,Zip: Not reported

Reported Date: 04/03/1997

Priority Description: Not reported

Priority Status: Not reported

NAME: FORMER MOBIL 12F1Y

ADDRESS: 507 W ARAPAHO RD
RICHARDSON, TX 75080

LPST: FORMER MOBIL 12F1Y

City,State,Zip: RICHARDSON, TX

Facility Id: Not reported

Procedure: 1 - RPR

Region City: Not reported

Case Start Date: 01/01/1986

Reported Date: 07/24/1989

Priority Description: Not reported

Priority Status: Not reported

SITE DETAIL REPORT

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

JOB: TEAM 1

LPST Id: 93527

EID/Status: 6A - FINAL CONCURRENCE ISSUED

Coordinators RPR: Not reported

Facility Location: Not reported

Program: 1 - RPR

Region City: Not reported

Case Start Date: 01/01/1986

Reported Date: 07/24/1989

Responsible Party Telephone: Not reported

Responsible Party City,St,Zip: Not reported

Reported Date: 04/03/1997

Priority Description: Not reported

Priority Status: Not reported
Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

JOB: TEAM 1

NPL: NPL National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA’s Environmental Photographic Interpretation Center (EPIC) and regional EPA offices. NPL - National Priority List Proposed NPL - Proposed National Priority List Sites. NPL LIENS - Federal Superfund Liens.

LPST

NAME: CHEVRON 0105845
ADDRESS: 300 W ARAPAHO RD
RICHARDSON, TX 75080

SOURCE: TX Texas Commission on Environmental Quality

EDR ID: U001242195
DIST/DIR: 0.469 SE
ELEVATION: 649
MAP ID: 5

REV: 06/04/2019
ID/Status: 92442
ID/Status: 9A - FINAL CONCURRENCE ISSUED

LPST ID: 92442
Facility Location: Not reported

TCEQ Region and City: REGION 04 - DFW METROPLEX
Region City: Not reported

Reported Date: 09/18/2000
Entered Date: 12/21/1988
Priority: 2.5 - GW IMPACT PUBLIC/DOMESTIC WATER SUPPLY WELL W/IN 0.25mi
Program: 1P - PRIVATIZATION CONTRACTOR
CA Status: 6A - FINAL CONCURRENCE ISSUED
Priority Description: Not reported
Status: Not reported
Coordinators Primary: Not reported
Coordinators RPR: Not reported
Responsible Party Name: Not reported
Responsible Party Contact: Not reported
Responsible Party Address: Not reported
Responsible Party City,Zip: Not reported
Responsible Party Telephone: Not reported

Reported Date: 02/25/1988
Case Start Date: 02/25/1988

RCRA COR ACT: CORRACCTS CORRACCTS identifies hazardous waste handlers with RCRA corrective action activity. CORRACCTS
- Corrective Action Report

RCRA TSD: RCRA-TSDF RCRAInfo is EPA’s comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDF's treat, store, or dispose of the waste. RCRA-TSDF - RCRA - Treatment, Storage and Disposal

RCRA GEN: RCRA-LQG RCRAInfo is EPA’s comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. RCRA-LQG - RCRA - Large Quantity Generators RCRA-SOQ - RCRA - Small Quantity Generators. RCRA-VSOQ - RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators).

Federal IC / EC: LUCIS LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties. LUCIS - Land Use Control Information System US ENG CONTROLS - Engineering Controls Sites List. US INST CONTROL - Sites with Institutional Controls.

ERNS: ERNS Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances. ERNS - Emergency Response Notification System
Database Descriptions

State/Tribal NPL: SHWS State Hazardous Waste Sites. State hazardous waste site records are the states’ equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state. SHWS - State Superfund Registry

State/Tribal SWFL: SWFL Solid Waste Facilities/Landfill Sites. SWFL/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites. SWFL/LF - Permitted Solid Waste Facilities DEBIRIS - DEBIRIS.

State/Tribal IC / EC: AUL Activity and use limitations include both engineering controls and institutional controls. AUL - Sites with Controls

State/Tribal VCP: VCP TOEG INDIAN VCP R1 - Voluntary Cleanup Priority Listing. INDIAN VCP R7 - Voluntary Cleanup Priority Listing. VCP RRC - Voluntary Cleanup Program Sites. A listing of voluntary cleanup priority sites located on Indian Land located in Region 1. VCP RRC - Voluntary Cleanup Priority Listing

ST/Tribal Brownfields: BROWNFIELDS Brownfield site assessments that are being cleaned under EPA grant monies. BROWNFIELDS - Brownfields Site Assessments

US Brownfields: US BROWNFIELDS Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs. US BROWNFIELDS - A Listing of Brownfields Sites

Other Haz Sites: CDL A listing of former clandestine drug site locations CDL - Clandestine Drug Site Locations Listing PRIORITY CLEANERS - Dry Cleaner Remediation Program Prioritization List. PFAS - PFAS Contamination Site Location Listing.
Database Sources

- **NPL**: EPA
 - Updated Quarterly

- **NPL Delisted**: EPA
 - Updated Quarterly

- **CERCLIS**: Environmental Protection Agency
 -Varies

- **NFRAP**: EPA
 - Updated Quarterly

- **RCRA COR ACT**: EPA
 - Updated Quarterly

- **RCRA TSD**: Environmental Protection Agency
 - Updated Quarterly

- **RCRA GEN**: Environmental Protection Agency
 - Updated Quarterly

- **Federal IC / EC**: Department of the Navy
 -Varies

- **ERNS**: National Response Center, United States Coast Guard
 - Updated Quarterly

- **State/Tribal NPL**: Texas Commission on Environmental Quality
 - Updated Semi-Annually

- **State/Tribal SWL**: Texas Commission on Environmental Quality
 - Updated Quarterly

- **State/Tribal LTANKS**: EPA Region 1
 -Varies

- **State/Tribal Tanks**: FEMA
 -Varies

Database Sources

- **State/Tribal IC / EC**: Texas Commission on Environmental Quality
 -Varies

- **State/Tribal VCP**: Railroad Commission of Texas
 -Varies

- **ST/Tribal Brownfields**: TCEQ
 - Updated Semi-Annually

- **US Brownfields**: Environmental Protection Agency
 - Updated Semi-Annually

- **Other SWF**: TCEQ
 -Varies

- **Other Haz Sites**: Department of Public Safety
 -Varies

- **Other Tanks**: Department of Planning & Development Review
 -Varies

- **Local Land Records**: Texas Commission on Environmental Quality
 -Varies

- **Spills**: Texas Commission on Environmental Quality
 - Updated Quarterly

- **Other: Environmental Protection Agency**
 - Updated Quarterly
Street Name Report for Streets near the Target Property

Target Property: 500 ROCKINGHAM DRIVE
RICHARDSON, TX 75080

Street Name
Beverly Dr
Custer Rd
Daniel St
Hampshire Ln
Joliet Dr
Lowell Ln
Lynn St
Maisden Dr
Main St
Nantucket Cr
Rockingham Dr
Vernet St
Ramp
W Arapaho Rd

Dist/Dir
0.19 NNE
0.09 East
0.09 East
0.15 West
0.16 SE
0.12 NW
0.11 SE
0.21 North
0.21 SSE
0.23 WNW
0.03 South
0.06 North
0.17 SSW
0.17 SSW

Environmental FirstSearch
ASTM MAP-NPL, RCRA COR, STATES Sites

800 ROCKINGHAM DRIVE RICHARDSON, TX 75080
Environmental FirstSearch
0.500 Mile Radius
Non ASTM Map, Spills FINDS
500 ROCKINGHAM DRIVE RICHARDSON, TX 75080

Site location Map
Topo 0.75 Mile Radius
500 ROCKINGHAM DRIVE RICHARDSON, TX 75080

Black Rings Represent 0.5 Mile Radius: Red Ring Represents 500 ft. Radius

- Target Property (Latitude: 33.465458 Longitude: 96.733583)
- Identified Sites
- Sensitive Receptors
- National Priority List Sites

Map Image Position: TF
Map Reference Code & Name: 5825521 Garland
Map Status: TX
Version Date: 2013
Map Image Position: SW
Map Reference Code & Name: 5825599 Addison
Map Status: TX
Version Date: 2012
Non-Invasive Tier 1 Vapor Encroachment Screening - Database Review Worksheet

Brandywine Apartments

<table>
<thead>
<tr>
<th>State Standard Environmental Record Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>VCP</td>
</tr>
<tr>
<td>LPSE</td>
</tr>
<tr>
<td>LPSE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Federal Standard Environmental Record Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

There are no Federal Environmental Record Sources identified within the Area of Concern.

Sites outside of the maximum area of concern (1/3 mile) for both State and Federal Environmental Record Sources are not a VEC and are therefore not included in this worksheet.

Total Sources of Vapor Encroachment

<table>
<thead>
<tr>
<th></th>
<th>Up-gradient</th>
<th>Down-gradient</th>
<th>Cross-gradient</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX F

Interview Documentation
<table>
<thead>
<tr>
<th>QUESTION</th>
<th>YES</th>
<th>NO</th>
<th>UNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did a search of recorded land title records identify any liens or</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>recorded against the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Did a search of recorded land title records identify any Activity</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>and Use Limitations (AULs) such as engineering controls, land use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>restrictions or institutional controls that are in place at the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>property and/or been filed or recorded against the property under</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>federal, tribal, state or local law?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Are you aware of any notices from any governmental entity regarding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>violations of environmental laws or possible liability relating to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hazardous substances or petroleum products?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Are you aware of any pending, threatened, or past litigation and/or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>administrative proceedings relevant to hazardous substances or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>petroleum products, in, on, or from the subject property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Do you have any specialized knowledge or experience related to the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>property or nearby properties? For example, are you involved in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>same line of business as the current or former occupants of the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>property or adjoining property so that you would have specialized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>knowledge of the chemicals and processes used by this type of business?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Do you know the past uses of the property?</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>7. Do you know specific chemicals that are present or once were present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Do you know of spills or other chemical releases that have taken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>place at the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Do you know of environmental cleanups that have taken place at the</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Based on your knowledge and experience related to the property,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>are there any obviously clear indicators that point to the presence or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>likely presence of releases at the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Is the property or has the property been used as a gasoline station,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>commercial printing, dry cleaners, photo developing, landfill,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industrial use, waste treatment or disposal facility?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Are you aware of fill dirt that has been brought onto the subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>property that originated from a contaminated site or that is of an</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown origin?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Are there currently, or to the best of your knowledge have there</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>been previously, any registered or unregistered storage tanks (above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or underground) located on the subject property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Are there existing or proposed stationary tanks containing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>explosive or fire-prone materials of 100 gallons or larger on the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>site or nearby the site?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Are there monitoring wells at the subject property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16a. Does the purchase price being paid for this property reasonably</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>reflect the fair market value of the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16b. If you conclude that there is a difference, have you considered</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>whether the purchase price is because contamination is known or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>believed to be present at the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Has a title search been performed? If yes, please attach.</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>18. What type of property transaction is being performed? i.e. sale,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>purchase, transfer, refinance?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. If you are the current landowner, in what year did you purchase</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>the subject property?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please return to DGG; fax 804-358-3003 or mail it to 201 Wyldrose Drive, Midlothian, VA 23113

LeaAnn Wilson 12-2-19

DG Property Manager, NCR

Years with Property
From: Oliver Bonhotel
Sent: Monday, December 2, 2019 3:59 PM
To: Elizabeth Fulmer
Subject: FW: Environmental Site Assessment (ESA) Questionnaires for Eberhart Place

Oliver Bonhotel,
Environmental Project Manager
Dominion Due Diligence Group
201 Wyderose Drive
Midlothian, Va. 23113

Office: (540) 793-5055
Cell: (540) 793-5055

From: Tracey Fine <TFine@nationalchurchresidences.org>
Sent: Monday, December 2, 2019 3:56 PM
To: Oliver Bonhotel <o.bonhotel@d3g.com>
Subject: RE: Environmental Site Assessment (ESA) Questionnaires for Eberhart Place

This is for a LIHTC application. If we win financing, we would acquire into a new entity. Eberhart is not being refinanced. This is an identity of interest transaction.

Tracey Fine
Senior Project Leader
National Church Residences
Office Location: Austin, Texas
Cell: 773.860.5747
tfine@nationalchurchresidences.org
www.nationalchurchresidences.org

CONFIDENTIALITY NOTICE: This e-mail message may contain confidential and/or privileged material. Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message. If you are the intended recipient but do not wish to receive communications through this medium, please so advise the sender immediately. This message is for the designated recipient only and may contain privileged, proprietary or otherwise private information. If you have received it in error, please notify the sender immediately and delete the original. Any other use of the email by you is prohibited.
Previous Landowner Property Questionnaire

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>YES</th>
<th>NO</th>
<th>UNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did a search of recorded land title records (or judicial records where appropriate) identify any environmental liens filed or recorded against the property under federal, tribal, state or local law?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Did a search of recorded land title records (or judicial records where appropriate) identify any Activity and Use Limitations (AULs), such as engineering controls, land use restrictions or institutional controls that are in place at the property and/or have been filed or recorded against the property under federal, tribal, state or local law?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Are you aware of any notices from any governmental entity regarding any possible violation of environmental laws or possible liability relating to hazardous substances or petroleum products?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Are you aware of any pending, threatened, or past litigation and/or administrative proceedings relevant to hazardous substances or petroleum products, in, on or from the subject property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Do you have any specialized knowledge or experience related to the property or nearby properties? For example, are you involved in the same line of business as the current or former occupants of the property or adjoining property so that you would have specialized knowledge of the chemicals and processes used by this type of business?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Do you know the past uses of the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Do you know specific chemicals that are present or once were present at the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Do you know of spills or other chemical releases that have taken place at the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Do you know of environmental cleanups that have taken place at the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Based on your knowledge and experience related to the property, are there any obvious indicators that point to the presence or likely presence of releases at the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Is the property or has the property been used as a gasoline station, motor repair facility, commercial printing, dry cleaners, photo developing, landfill, industrial use, waste treatment or disposal facility?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Are you aware of fill dirt that has been brought onto the subject property that originated from a contaminated site or that is of an unknown origin?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Are there currently, or to the best of your knowledge have there been previously, any registered or unregistered storage tanks (above or underground) located on the subject property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Are there existing or proposed stationary tanks containing explosive or fire-prone materials of 100 gallons or larger on the site or nearby the site?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Are there monitoring wells at the subject property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Is the subject property served by a private well and/or a private septic system?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please return to D3G: fax 804-358-3003 or mail it to 201 Wylderose Drive, Midlothian, VA 23113

<table>
<thead>
<tr>
<th>PRINT NAME</th>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE/COMPANY</th>
<th>YEARS WITH PROPERTY</th>
</tr>
</thead>
</table>
Key Site Manager Questionnaire

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>YES</th>
<th>NO</th>
<th>UNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did a search of recorded land title records (or judicial records where appropriate) identify any environmental liens filed or recorded against the property under federal, tribal, state or local law?</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>2. Did a search of recorded land title records (or judicial records where appropriate) identify any Activity and Use Limitations (AULs), such as engineering controls, land use restrictions or institutional controls that are in place at the property and/or have been filed or recorded against the property under federal, tribal, state or local law?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Are you aware of any notices from any governmental entity regarding any possible violation of environmental laws or possible liability relating to hazardous substances or petroleum products?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Are you aware of any pending, threatened, or past litigation and/or administrative proceedings relevant to hazardous substances or petroleum products, in, on or from the subject property?</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>5. Do you have any specialized knowledge or experience related to the property or nearby properties? For example, are you involved in the same line of business as the current or former occupants of the property or adjoining property so that you would have specialized knowledge of the chemicals and processes used by this type of business?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Do you know the past uses of the property?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Do you know specific chemicals that are present or once were present at the property?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Do you know of spills or other chemical releases that have taken place at the property?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Do you know of environmental cleanups that have taken place at the property?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Based on your knowledge and experience related to the property, are there any obvious indicators that point to the presence or likely presence of releases at the property?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Is the property or has the property been used as a gasoline station, motor repair facility, commercial printing, dry cleaners, photo developing, landfill, industrial use, waste treatment or disposal facility?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Are you aware of fill dirt that has been brought onto the subject property that originated from a contaminated site or that is of an unknown origin?</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Are there currently, or to the best of your knowledge have there been previously, any registered or unregistered storage tanks (above or underground) located on the subject property?</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>14. Are there existing or proposed stationary tanks containing explosive or fire-prone materials of 100 gallons or larger on the site or nearby the site?</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>15. Are there monitoring wells at the subject property?</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>16. Is the subject property served by a private well and or a private septic system?</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Please return to DSG: fax 804-358-3003 or mail it to 201 Wyderose Drive, Midlothian, Virginia 23113

<table>
<thead>
<tr>
<th>PRINT NAME</th>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Manager</td>
<td></td>
<td>1970</td>
</tr>
</tbody>
</table>

DG
Date: November 19, 2019
To: Patti Tschirhart, Records Management Coordinator
From: Wesley Caskey, Fire Marshal
Re: Environmental Site Assessment Request – 500 N Rockingham

Pursuant to your request, I have reviewed the Richardson Fire Department files and records for information regarding hazardous materials incidents, flammable liquid storage tanks, and environmental impact incidents involving the property identified above.

The search revealed there are no known hazardous materials or environmental impact incidents. There are no known outstanding fire code violations.

If you have any questions or comments, please call our office at (972) 744-5750.
April 24, 2019

BRANDYWINE APARTMENTS
500 ROCKINGHAM LN
RICHARDSON, TX 75080

Congratulations, an inspection at this address on Apr 24, 2019 revealed no violations.

Inspection Note No violations found

ORDER TO COMPLY: Outstanding violations are contrary to law, you must correct them upon receipt of this notice. A re-inspection to determine compliance with this notice will be conducted. If you fail to comply with this notice you may be liable for the penalties provided for by law for such violations.

368 ROY HAWKINS
Inspector

NA
Dear Compliance Manager Jane Goins:

Thank you for your interest in public records of City of Richardson. Your request has been received and is being processed in accordance with Chapter 552 of Texas Government Code, the Public Information Act. Your request was received in this office on 11/14/2019 and given the reference number R001089-111419 for tracking purposes.

Records Requested: Brandywine Apartments, 500 Rockingham Drive, Richardson, TX 75080 Fire Information Request - I am requesting the most recent fire inspection report, any open fire code violations, fire department response for HAZMAT spills, and any permits for above/underground storage tanks. – **IF** THERE ARE **NO** AST/UST – **THIS NEXT QUESTION DOES NOT APPLY** - Are there any current or recent (within the past year) permits issued for thermal/explosive hazards (aboveground storage tanks>100 gallons) located within a one (1) mile radius of the subject property? *If yes, please attach a copy of all available information* ** Please confirm if there are any records of open fire code violations**

Your request will be forwarded to the relevant City of Richardson department(s) to locate the information you seek and to determine the volume and any costs associated with satisfying your request. You will be contacted about the availability and/or provided with copies of the records in question. **PLEASE NOTE:** The Chapter 552 of Texas Government Code, the Public Information Act does not require a governmental body to create new information, to do legal research, or to answer questions.

You can monitor the progress of your request at the link below and you'll receive an email when your request has been completed. Again, thank you for using the Public Information Center.

City of Richardson

To monitor the progress or update this request please log into the Public Information Center
Dear Jane Goins:

The Texas Commission on Environmental Quality (TCEQ) received your request for information under the Texas Public Information Act. After reviewing the appropriate resources of the TCEQ, we were unable to locate any responsive information in the possession of the TCEQ concerning the above referenced request.

If you have any questions concerning this matter, you may contact me at 512/239-3282 or by e-mail at openrecs@tceq.texas.gov.

Sincerely,

Marie Boren
Customer Service Rep
Information Resources Division
Open Records Request Form

Fill out the Open Records Request form below to request public information (PIR). TCEQ accepts Open Records Requests in any legible format; this form is intended to be a guide to help expedite requests. *Make a copy of the form for your records. Call 512/239-3282 for questions about the form.

Please Mail completed form to:
Texas Commission on Environmental Quality
Attn: Public Information Officer, MC 197
P.O. Box 13087
Austin, Texas 78711-3087

Or Fax your request to 512/239-OPEN (6736); or E-mail your request to openrecs@tceq.texas.gov

Open Records Requests (ORR) aka Public Information Act (PIA) requests should contain the following information:

Please input your contact information below. Required fields are marked with an asterisk (*).

* Name_ Jane Goins_____________________________ ____________________________

Company/Organization_Dominion Due Diligence Group

* Mailing Address__201 Wylderose Drive___________________________

* City__Midlothian_______________ * State_Virginia_____ *ZIPCode_ 23113

* E-Mail Address_j.goins@d3g.com_____________ (E-Mail is the preferred form of communication.)

* Phone Number_804-665-2912____________ Fax Number__804-588-5758_________________

*Please provide the complete name(s) of the site/facility; including address, you are inquiring about: Environmental Health Information Request:

As part of a real estate screening that we are performing at the below address, I am requesting assistance to locate any environmental-related permits and information associated with the property, such as any septic tanks or wells on the property.

Brandywine Apartments, 500 Rockingham Drive, Richardson, TX 75080, Dallas County
Many facilities are found in the TCEQ's Central Registry. For example, a search by Regulated Entity (RN) will reveal permits and registrations regarding a facility's Air, Water, Waste or Remediation ID numbers.

Please provide any information which will enable the agency to perform a more comprehensive record search:

Septic and well information

All TCEQ records are available for public view unless one of the exceptions to disclosure listed in the Public Information Act applies. Government Code Chapter 552 - Public Information, lists the exceptions. Some types of information that may be kept confidential include:

- Private, personal information such as certain financial or medical information;
- Certain law enforcement information, which may include the identity of informers;
- Complainant's identity;
- Some information related to ongoing litigation;
- Proprietary information submitted by regulated entities;
- Attorney-client (privileged).

Are you requesting any and all documents including those that may meet an exception from disclosure under the Public Information Act (PIA)?

☐ Only publicly available documents
☐ Any and all documents (including confidential information)
 (NOTE: ‘Any and all documents’ option may require an Attorney General ruling.)

Do you need the documents certified?

☐ Yes (additional fees apply)
☐ No

Individuals are entitled to request and review their personal information that the agency gathers on its forms. They may also have any errors in their information corrected. To review such information, contact us at 512/239-3282.
APPENDIX G

Special Contractual Conditions Between User and Environmental Professional
There are no special contractual conditions between the User and Environmental Professional:

D3G has no financial interest or family relationship with the officers, directors, stockholders or partners of the Borrower, the general contractor, any subcontractors, the buyer or seller of the proposed property or engage in any business that might present a conflict of interest.

D3G is employed under contract for this specific assignment and has no other side deals, agreements, or financial considerations with the Lender or others in connection with this transaction.
APPENDIX H

Qualifications for Environmental Professionals
STEVE MYERS, BPI MFBA
ENGINEERING PROJECT MANAGER

EDUCATION
Butler University - Bachelor of Marketing

CERTIFICATIONS/REGISTRATIONS/TRAINING
Project Management Professional (PMP)
Property Inspection Training (D3G Internal Training)
Fair Housing Act Accessibility Training (D3G Internal Training)
Environmental Site Assessment (D3G Internal Training)
Elevator Inspections given by Sanjay Kamani, QEI, KP Property Advisors LLC VHDA
Universal Design Course

SUMMARY OF EXPERIENCE
Mr. Myers is a Construction Inspector for Dominion Due Diligence Group. He is directly responsible for conducting and preparing Property Condition Reports, Project Capital Needs Assessments, and Phase I Environmental Site Assessments throughout the United States. From hands on experience in many phases of construction, to operating his own roofing company for five (5) years, Steve has over ten (10) years of experience in the construction industry. Prior to joining Dominion Due Diligence Group, he has previously worked as a Project Manager in the construction industry and Property Due Diligence industry. The following sites are examples of multi-family and health care facility inspections in which Mr. Myers has participated:

HUD MAP 223(f)
- Southfield Tabemacle Commons - Columbus, OH
- Murphy’s Landing - Indianapolis, IN
- Allen House - New York, NY
- Cascade Apartments - Holland, MI
- Brashear Tower - Livonia, MI
- Pineridge Apartments - Walker, MI
- Limewood Apartments - Battle Creek, MI
- Schoolhouse Apartments - Sykesville, MD
- Highland Chateau Apartments - Duluth, MN
- Landing Apartments - Kalamazoo, MI
- New Amsterdam Lofts - Detroit, MI

HUD LEAN 232/223(f)
- Northwest Manor - Indianapolis, IN
- Century Ridge - Chilton, WI
- Heritage Manor Healthcare Center - Mayfield, KY
- Lodge Care Center - Loveland, OH
- Crystal Seasons Living Center - Lake Crystal, MN
- Lyons H&L - Lyons, IN
- Jasper Assisted Living - Jasper, IN
- St. Joseph Rehab & Nursing Center - Dorchester, MA
- Pavilion Rehab & Nursing Center - Hyannis, MA
- Oakridge Assisted Living - Hastings, MN
- Morristown Manor - Morristown, IN
STEVE MYERS, BPI M FBA
ENGINEERING PROJECT MANAGER

MULTIFAMILY INTRUSIVE PCNA
- Towne Center Place - Ypsilanti, MI
- Park Place Towers - Mt. Clemens, MI
- Sunset Heights - Rock Island, IL
- Allegheny Commons - Pittsburgh, PA
EDUCATION
Christopher Newport University, B.S. Environmental Biology, May 2016

CERTIFICATIONS/REGISTRATIONS/TRAINING
HUD Multi-Family Accelerated Processing (MAP) Training (D3G Internal Training)
Principles of Environmental Site Assessments - ASTM E 1527-13
HUD Web-based Instructional System for Environmental Reviews (WISER)
OSHA/HERA Asbestos Awareness Training
OSHA Lead Hazard Communication for Real Estate Professionals Training

SUMMARY OF EXPERIENCE
Elizabeth Fulmer is an Environmental Project Manager for Dominion Due Diligence Group. Ms. Fulmer is directly responsible for coordinating, conducting and preparing Phase I Environmental Site Assessments (HUD, NEPA, tax credit and ASTM E 1527-13) throughout the United States. Additionally, Ms. Fulmer is responsible for performance and management of field projects, client contact and comprehensive report writing. The following sites are examples of projects in which Ms. Fulmer has participated:

HUD MAP 223(f)
- Sterling Green Village – Channelview, TX
- Desert Height Apartments – Barstow, CA
- Murphy’s Landing – Indianapolis, IN
- Coleman House I and II – Newton, MA
- Oswego Mill Street Station – Oswego, IL
- The Reserve at Pin Oak – Mishawaka, IN
- Oakton Beach and Tennis Club – Pewaukee, WI
- Friendship House – Louisville, KY
- Canal Park – Westport, CT
- Abbott House – Derry, NH
- Pike Metropolitan Housing Authority Portfolio – Piketon, OH
- Riverside Commons I and II – Dayton, OH
- Cambridge Club Apartments – Cambridge, MD
- Maple Heights Apartments – Rising Sun, MD
- Union Avenue Apartments – Baltimore, MD
- Seton Village – Waterville, ME
- Palouse Trace Apartments – Pullman, WA
- Aurum Apartments – South Bend, IN
- Harbour Pointe Apartments – Indianapolis, IN

HUD MAP 202/223(f)
- La Trinidad Elderly – Ponce, PR

HUD MAP 221(d)(4) NC
- Proposed Proximity at Matthews – Matthews, NC
- Proposed Price Street Apartments – Virginia Beach, VA
- Valley Bridge – Toledo, OH
- Proposed the Woodberry – Baltimore, MD
ELIZABETH FULMER
ENVIRONMENTAL PROJECT MANAGER

HUD LEAN 232/223(f)
- Northwest Manor Healthcare Center – Indianapolis, IN
- Covington Care Nursing and Rehabilitation Center – Covington, TN
- Bethesda Health Care Center – Cookeville, TN
- Vanco Health Care and Rehabilitation – Goodlettsville, TN
- Via Elegante Sierra Vista Assisted Living – Hereford, AZ
- Hillcrest Cottages – Papillion, NE
- Baya Pointe Nursing and Rehabilitation Center – Lake City, FL

HUD LEAN 232 NC
- Proposed Spring Arbor Assisted Living Facility – Olney, MD

ASTM
- Proposed Carriage Hill Independent Living Facility – Richmond, VA
- United Network for Organ Sharing – Richmond, VA
- Proposed Saint Paul Apartments – Norfolk, VA
- Schell Brothers Proposed Office – Richmond, VA
- Proposed Terracina Grand Skilled Nursing Facility Phase III – Naples, FL
- Indiana Avenue – Indianapolis, IN

TAX CREDIT
- Proposed Avondale Woods of Dublin-Phase II – Dublin, OH (OHFA)
- Willow Terrace – Lebanon, PA (PHFA)
- Hoover Place – Dayton, OH (OHFA)

OTHER
- Charter Oaks Apartments – Memphis, TN (Standard & Poor)
- Apartments at Hedgerow – Memphis, TN (Standard & Poor)
- Ashton Hills Apartments – Memphis, TN (Standard & Poor)
JOE FUSCALDO, EP
ENVIRONMENTAL TEAM MANAGER

EDUCATION
College of William and Mary, B.S. Geology, B.S. Environmental Science

CERTIFICATIONS/REGISTRATIONS/TRAINING
HUD Multi-family Accelerated Processing (MAP) Training (D3G Internal Training)
Standard Practice for Environmental Site Assessments - ASTM E 1527
RMD LPA-1 XRF Lead Paint Detection Device Operator Training/Radiation Safety Training
Screening for Potential Vapor Intrusion Problems under the ASTM E 2600 Standard – Presented by Anthony J. Buonicore, P.E., BCEE, QEP – November 2009
Virginia Asbestos Inspector License #3303 003629
Virginia Lead Inspector License #3355 000728

SUMMARY OF EXPERIENCE
Joe Fuscaldo is an Environmental Team Leader for Dominion Due Diligence Group (D3G). Mr. Fuscaldo is directly responsible for coordinating, conducting, preparing, and reviewing Phase I Environmental Site Assessments (ASTM, HUD, and State Housing Tax Credit Programs) throughout the United States. Additionally, Mr. Fuscaldo is responsible for performance and management of field projects, client contact and comprehensive report writing. Mr. Fuscaldo qualifies as an Environmental Professional as defined under ASTM E 1527-13 Section 4.3 and Appendix X2 with over six (6) years of experience performing investigations of surface and subsurface environmental conditions. He has also worked as a professional environmental scientist/environmental consultant which included fieldwork involving indoor air quality monitoring, geologic mapping, well installation, hydrogeologic aquifer testing, logging of soil borings, collection of environmental media including soil, sediment, surface water, and groundwater, and oversight of subcontractors in Virginia and surrounding states. He also has experience writing EPA and Virginia DEQ regulated plans including Operation and Maintenance (O&M) Manuals, Stormwater Pollution Prevention Plans (SWPPP), Spill Prevention Control and Countermeasures (SPCC) Plans, Oil Discharge Contingency (ODC) Plans, and Voluntary Remediation Program (VRP) applications. The following sites are examples of projects in which Mr. Fuscaldo has participated:

HUD MAP 221(d)(4) NC
- New Hampshire Townes – Washington D.C.
- Proposed Brown’s Village – Slidell, LA
- Proposed Towne Place at Greenbrier – Chesapeake, VA
- Proposed Hammocks Beach Apartments – Swansboro, NC
- Proposed Sandalwood Village – Naples, FL
- Pennsylvania Apartments – Oklahoma City, OK
- College Square Apartments – Greendale, WI
- Hessel on the Park – Champaign, IL
- Pine Crossing Apartments – Decatur, IN
- Pacific Manor – Burbank, CA
- Treymore City Place Apartments – Dallas, TX
- Proposed Jefferson Crossing – Charles Town, WV
- Proposed Goose Creek – Fishersville, VA
- Proposed Woman’s Mill Village Square – Frederick, MD

HUD MAP 221 (d)(4) SR
- Epworth Manor – Louisa, VA
- The David Whitney Building – Detroit, MI
- Former Majestic Hotel – Hot Springs, AR
- Washington Garden Apartments – Grenada, MS
- Spencer House Apartments – Beaverton, OR
JOE FUSCALDO, EP
ENVIRONMENTAL TEAM MANAGER

HUD MAP 223(f)
- Buckhannon Manor – Buckhannon, WV
- Plaza West Apartments – Topeka, KS
- Burlington Oaks Apartments – Burlington, KY
- Bermuda Estates at Ormond Beach – Ormond Beach, FL
- Chestnut Trace II – Tuscaloosa, AL
- Westbrook Apartments – Stillwater, OK
- Park Crest Village – Glassboro, NJ
- Waterford Apartments – Greenville, NC
- Clock Tower Apartments – Hoboken, NJ
- The Grove at Conway – Conway, AR
- Bethlehem Fields – Bethlehem, PA
- Village at Main Street – Phase II – Wilsonville, OR
- Norwich Woods Apartments – Norwich, CT
- Hickory View Apartments – Nashville, TN
- Charlesgate North – Providence, RI
- Wilikina Apartments – Wahiawa, HI

HUD LEAN 232/223(f)
- Dogwood Forest at Dunwoody – Atlanta, GA
- Conroe Health Care Center – Conroe, TX
- Golden Living Center – Three Oaks – Marshfield, WI
- Golden Living Center – Stenton – Philadelphia, PA
- Abbott Terrace Health Center – Waterbury, CT
- Golden Living Center – Hillcreek – Louisville, KY
- Golden Living Center – Sycamore Village – Kokomo, IN
- New Outlook of Taylorsville – Taylorsville, NC
- Oakleaf Village of Toledo – Toledo, OH
- The Canterbury at Cedar Grove – Cedar Grove, NJ
- Nemasket Healthcare Center – Middleboro, MA

LEAD-BASED PAINT (LBP) INSPECTIONS
- 2316 Campostella Road – Chesapeake, VA
- 311 Hollywood Avenue – Hampton, VA

ASTM/AAI COMPLIANT
- Westminster Oaks – Springfield, VA
- Richardson Court Apartments – Nashville, NC
- Barnaby Manor Apartments – Washington DC
- Central Court Apartments – Tampa FL
- Rockaway Courthouse – Rockaway, NY

STATE HOUSING TAX CREDIT PROGRAMS
- Proposed Harkins Mill – Blairsville, GA (Georgia DCA)
- Riverview Retirement Center – Portsmouth, OH (Ohio HFA)
- The Mt. Vernon House – Alexandria, VA (Virginia HDA)
- Elm Street Apartments – East Baton Rouge, LA (Louisiana HFA)
- Summit Apartments – Lenoir, NC (North Carolina HFA)
- Pinewood Park – Lufkin, TX (Texas DHCA)

OTHER
- Sterling Shores Estates – Lakeport, CA (HUD TAP 207(m))
- InChuCo Apartments – Chapel Hill, NC (HUD TAP 221 (d)(3) SR)
APPENDIX I

Certificate of Liability Insurance
CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY): 8/29/2019

PRODUCER:
Riggs, Counselman, Michaels & Downes, Inc.
4200 Innslake Drive, Suite 303
Glen Allen VA 23060

INSURED:
Dominion Environmental Group, Inc dba Dominion Due
201 Wylderose Drive
Midlothian VA 23113

CERTIFICATE NUMBER: 552352627

REVISION NUMBER:

IMPORTANT: If the certificate holder is an ADDITIONAL INSURED, the policy(ies) must have ADDITIONAL INSURED provisions or be endorsed. If SUBROGATION IS WAIVED, subject to the terms and conditions of the policy, certain policies may require an endorsement. A statement on this certificate does not confer rights to the certificate holder in lieu of such endorsement(s).

INSURER(S) AFFORDING COVERAGE

- **INSURER A:** Nautilus Insurance Company
 - **NAIC #:** 17370

- **INSURER B:** American Casualty Company of Reading, PA
 - **NAIC #:** 20427

- **INSURER C:** The Cincinnati Insurance Company
 - **NAIC #:** 10677

- **INSURER D:** Continental Casualty Company
 - **NAIC #:** 20443

COVERAGES

<table>
<thead>
<tr>
<th>INSURER LTR</th>
<th>TYPE OF INSURANCE</th>
<th>ADD'L SUBSCR (INSR WDR)</th>
<th>POLICY NUMBER</th>
<th>POLICY EFF (MM/DD/YYYY)</th>
<th>POLICY EXP (MM/DD/YYYY)</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>COMMERCIAL GENERAL LIABILITY</td>
<td>Y Y</td>
<td>ECPO1520545119</td>
<td>9/1/2019</td>
<td>9/1/2020</td>
<td>EACH OCCURRENCE: $5,000,000</td>
</tr>
<tr>
<td></td>
<td>CLAIMS-MADE</td>
<td>X OCCUR</td>
<td>GENL AGGREGATE LIMIT APPLIES PER:</td>
<td></td>
<td></td>
<td>DAMAGE TO RENTED PREMISES (EA occurrence): $100,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POLICY</td>
<td></td>
<td></td>
<td>MED EXP (Any one person): $5,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PROJ</td>
<td></td>
<td></td>
<td>PERSONAL & ADV INJURY: $1,000,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOC</td>
<td></td>
<td></td>
<td>GENERAL AGGREGATE: $5,000,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTHER:</td>
<td></td>
<td></td>
<td>PRODUCTS - COMPP/OP AGG: $5,000,000</td>
</tr>
<tr>
<td>B</td>
<td>AUTOMOBILE LIABILITY</td>
<td>Y Y</td>
<td>BUAG599549028</td>
<td>9/1/2019</td>
<td>9/1/2020</td>
<td>COMBINED SINGLE LIMIT (EA accident): $1,000,000</td>
</tr>
<tr>
<td></td>
<td>ANY AUTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BODILY INJURY (Per person):</td>
</tr>
<tr>
<td></td>
<td>OWNED AUTOS ONLY</td>
<td>HIRED AUTOS ONLY</td>
<td>SCHEDULED AUTOS</td>
<td>NON-OWNED AUTOS ONLY</td>
<td></td>
<td>BODILY INJURY (Per accident):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PROPERTY DAMAGE (Per accident):</td>
</tr>
<tr>
<td>C</td>
<td>UMBRELLA LIAB</td>
<td>X OCCUR</td>
<td>EX50503127</td>
<td>9/1/2019</td>
<td>9/1/2020</td>
<td>EACH OCCURRENCE: $2,000,000</td>
</tr>
<tr>
<td></td>
<td>EXCESS LIAB</td>
<td>CLAIMS-MADE</td>
<td></td>
<td></td>
<td></td>
<td>AGGREGATE: $2,000,000</td>
</tr>
<tr>
<td>D</td>
<td>WORKERS COMPENSATION AND EMPLOYERS LIABILITY</td>
<td>Y/N</td>
<td>WC599549045</td>
<td>9/1/2019</td>
<td>9/1/2020</td>
<td>E.L. EACH ACCIDENT: $1,000,000</td>
</tr>
<tr>
<td></td>
<td>ANYPRECIPROTOR/PARTNER/EXECUTIVE OFFICER/MEMBER EXCLUDED? (Mandatory in NH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.L. DISEASE - EA EMPLOYEE: $1,000,000</td>
</tr>
<tr>
<td></td>
<td>If yes, describe under DESCRIPTION OF OPERATIONS below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.L. DISEASE - POLICY LIMIT: $1,000,000</td>
</tr>
<tr>
<td>A</td>
<td>Professional Liab</td>
<td>Contractors Poll Liab</td>
<td>ECPO1520545119</td>
<td>9/1/2019</td>
<td>9/1/2020</td>
<td>Each Claim: $5,000,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Each Pollution Condit: $5,000,000</td>
</tr>
</tbody>
</table>

DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES

(ACORD 101, Additional Remarks Schedule, may be attached if more space is required)

General Proof of Insurance

CERTIFICATE HOLDER:
Dominion Environmental Group Inc
201 Wylderose Drive
Midlothian VA 23113

CANCELLATION:

SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.

AUTHORIZED REPRESENTATIVE:

DOMIENV-01

© 1988-2015 ACORD CORPORATION. All rights reserved.
APPENDIX J

City of Richardson 2019 Water Quality Report
Richardson Water Utility employees take pride in delivering safe and “superior” quality drinking water to our customers. “Superior,” is the rating of our water system by the Texas Commission on Environmental Quality (TCEQ). This rating reflects the hard work and efforts of our employees to protect your health by delivering and maintaining safe and reliable drinking water.

The Water Utilities department is a municipal water distribution and wastewater collection utility owned by the City of Richardson. Wholesale treated water is purchased from the North Texas Municipal Water District (NTMWD) who has surface water rights from Lake Lavon, Lake Chapman, Lake Texoma and Lake Tawakoni.

The pumping and storage system is comprised of five pump stations, seven ground storage tanks and seven elevated storage tanks. The storage capacity is 36.25 million gallons with a pumping capacity of 98.9 million gallons per day. The water distribution system is comprised of 544 miles of water mains with 4,644 fire hydrants and 34,638 metered service connections. Each day, the city tests the water in the distribution system at various points in the city to ensure water is reaching the residents in good condition.

As water travels over the land’s surface or through the ground, it dissolves naturally occurring minerals and picks up substances from animal or human activity. Contaminants that may be in untreated water include; organic chemicals from industrial or petroleum use and or radioactive materials. Good watershed management by each of us to keep contaminants out of our lakes and waterways is cheaper and easier than removing them later at the treatment plant. The NTMWD conducts daily tests on the raw water from their sources, water in process and the finished water.

ALL drinking water may contain contaminants. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (1-800-426-4791).

The Public Services Department is responsible for your water distribution and infrastructure system maintenance and is part of the City government. The City Council meets on the second and fourth Monday of each month at 7:30 p.m. in the City Hall Council Chambers.

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (972) 744-4111.
Source Water Assessment Study

The TCEQ has completed an assessment of The North Texas Municipal Water Districts source water and results indicate that some of their sources are susceptible to certain constituents. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these constituents will be found in the Consumer Confidence Report. For more information on source water assessments and protection efforts in their system, contact NTMWD’s public information office for an appointment.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming
- Pesticides and herbicides, which might have a variety of sources such as agriculture, urban storm water runoff, and residential uses
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities

Chloramine Exception

The City of Richardson has been granted an exception for the use of chloramines by the Texas Commission on Environmental Quality (TCEQ). A requirement of the TCEQ’s exception the City of Richardson notifies its customers regarding the use of chloramines. North Texas Municipal Water District, the City of Richardson’s water supplier, uses the disinfectant chloramine instead of chlorine. The change was intended to benefit our customers by reducing the levels of disinfection byproducts (DBPs) in the system, while still providing protection from waterborne disease.

However, the change to chloramines can cause problems to persons dependent on dialysis machines. A condition known as hemolytic anemia can occur if the disinfectant is not completely removed from the water that is used for the dialysate. Consequently, the pretreatment scheme used for the dialysis units must include some means, such as charcoal filter, for removing the chloramine prior to this date. Medical facilities should also determine if additional precautions are required for other medical equipment.

In addition, chloraminated water may be toxic to fish. If you have a fish tank, please make sure that the chemicals or filters that you are using are designed for use in water that has been treated with chloramines. You may also need to change the type of filter that you use for fish tanks.
Water Loss

In the water loss audit submitted to the Texas Water Development Board for the period of Jan-Dec 2018, our system reported an estimated loss of 16.05% of total purchased water. If you have any questions about the water loss audit, please call (972) 744-4111.

Grassy, Earthy Taste and Odor

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily the cause for health concerns. For more information on taste, odor, or color of drinking water, please contact (972) 744-4111.

The north Texas summer climate normally consists of high temperatures and trace amounts of rainfall. The high temperatures and lack of rainfall creates an ideal environment for algae to bloom in surface water supplies.

Each summer, throughout the months of July and August, lakes and other surface water supplies experience a natural event – an “algal bloom”. Algal blooms are common to surface water supplies in warm weather climate states like Texas.

As hot summer temperatures warm the reservoirs, the lack of rainfall lessens the turbidity and allows the sunlight to penetrate the water. With the increase in water temperature and the lack of turbidity, photosynthesis will occur providing the right environment for algae to reproduce or “bloom”.

When an algal bloom exists, there is the possibility for a grassy, earthy taste in the treated drinking water supply. This event, although aesthetically undesirable to the public, does not alter the high quality of water provided to the cities and communities for their use.

NTMWD laboratory personnel monitor the raw water quality from Lake Lavon prior to its treatment. One of the many analyses performed is an algal count. Laboratory personnel, through this daily activity, can determine the onset of an algal bloom.

The blue green algae species Nostoc and Anabaena, as it reproduces or “blooms”, produces an oily organic substance. It is this organic substance that is responsible for the change in taste and odor of the treated drinking water.

NTMWD uses several steps to control the taste and odor produced. To reduce the unpleasant taste levels, activated carbon is used as an absorption media. Potassium permanganate is added as an oxidizing agent to reduce the odor associated with an algal bloom. Both chemicals are removed during the treatment process prior to its delivery to the cities.

Chlorine is used throughout the treatment process as a strong disinfectant. Chlorine also aids in odor reduction during times of algal blooms.

The quality of water remains high as regulated by the Texas Commission on Environmental Quality (TCEQ) and Environmental Protection Agency (EPA) standards. The treated water remains safe for human consumption with no health risks created by the “algal blooms”.

Cryptosporidium

Cryptosporidium is a microscopic parasite affecting the digestive tracts of humans and animal. It is shed in feces and when ingested, may result in diarrhea, cramps, fever and other gastrointestinal symptoms. Outbreaks have been most commonly associated with person-to-person (day care center) and waterborne (drinking and recreational water) spread of the parasite. Foodborne and animal-to-person spread has also been documented.

No specific drug therapy has proven to be effective, but people with healthy immune systems will usually recover within two weeks. Individuals with weak immune systems, however, may be unable to clear the parasite and suffer chronic and debilitating illness.

The NTMWD tests for Cryptosporidium in both the raw lake water and the treated water.
Special information for people with weakened immune systems – You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Water Conservation

Every customer can help reduce water consumption in and around your home. Here are some easy ways to reduce the amount of water you use.

- **Landscaping Conservation Tips**
 - Water trees and shrubs, which have deep root systems, longer and less frequently than shallow-rooted plants which require smaller amounts of water more often.
 - Mow your lawn to an average of 3 inches in height. Longer grass promotes soil moisture retention reducing the need to irrigate.
 - Water the lawn or garden during the coolest part of the day (early morning before 10:00 am and after 6:00 pm or later is best). Do not water on windy days.
 - Spreading a layer of organic mulch around plants retains moisture and saves water, time and money.

- **Irrigation System Conservation Tips**
 - Install a rain or moisture shutoff device or another technology to prevent the system from operating in the rain or when soil moisture is adequate.
 - Avoid overspray — Ensure that your irrigation system only sprays water on landscaped areas, not on concrete, wood, stone, brick or other impervious surfaces such as sidewalks, streets, driveways, fences or walls, which causes water runoff.
 - Adjust your watering schedule to the season. Decrease or cease watering when grass should be dormant during cooler weather months.
 - If water runs off your lawn easily, split your watering time into shorter periods to allow for better absorption.

- **In Home Water Conservation Tips**
 - Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
 - Add food wastes to a compost pile instead of using the garbage disposal and save gallons every time.
 - Shorten your shower by a minute or two and you’ll save up to 150 gallons per month.
 - Do not let the water run while shaving or brushing teeth.
 - A leaky toilet can waste 200 gallons per day. To detect leaks in the toilet, add food coloring to the tank water. If you see the same coloring in the bowl after 1 hour (without using the toilet) it is leaking.
 - Install faucet aerators. You’ll never notice the difference, and you’ll cut your sink water consumption in half!
 - Leaking faucets and toilets can waste thousands of gallons of water monthly, and they are inexpensive to fix. A few small changes in your water use habits can make a huge difference in water savings.

Definitions and Measurements

- **Maximum Contaminant Level (MCL)** - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to maximum contaminant level goals as feasible using the best available treatment technology.

- **Maximum Contaminant Level Goal (MCLG)** - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

 - (ppm) - Parts per million, or milligrams per liter (mg/l).
 - (ppb) - Parts per billion, or micrograms per liter
 - (ppt) - Parts per trillion, or nanograms per liter (ng/l)
 - (ppq) - Parts per quadrillion, or picograms per liter (pg/l)
 - (pCi/L) - Picocuries per liter is a measure of radioactivity in water.

- **Treatment Technique (TT)** - A required process intended to reduce the level of a contaminant in drinking water.

- **Maximum Residual Disinfectant Level (MRDL)** - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

- **Maximum Residual Disinfectant Level Goal (MRDLG)** - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

- **Action Level** - The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement a water system must follow.

 - **Level 1 Assessment** - A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria were found.

 - **Level 2 Assessment** - A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an Escherichia coli (E. coli) maximum contaminant level (MCL) violation has occurred and/or why total coliform bacteria were found on multiple occasions.

- **NTU** - Nephelometric Turbidity Units (this is the unit used to measure water turbidity)

- **ND** - Not Detected

2018 data analyses from most recent testing done in accordance with the regulations
Coliform Bacteria

<table>
<thead>
<tr>
<th>Maximum Contaminant Level Goal</th>
<th>Total Coliform Maximum Contaminant Level</th>
<th>Number of E. coli Positive Results</th>
<th>Number of Assessments Required</th>
<th>Number of Assessments Performed</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 positive monthly sample</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NO</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

NOTE: Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. If coliforms are found, this indicates the need to look for potential prob tems in water treatment or distribution. When this occurs, systems are required to conduct assessment(s) to identify problems and to correct any prob tems that were found during these assessments. A Level 1 assessment must be conducted when a PWS exceeds one or more of the Level 1 treatment technique triggers specified previously. Under the rule, this self-assessment consists of a basic examination of the source water, treatment, distribution system and relevant operational practices. The PWS should look at conditions that could have occurred prior to and caused the total coliform-positive sample. Example conditions include treatment process interruptions, loss of pressure, maintenance and operation activities, recent operational changes, etc. In addition, the PWS should check the conditions of the following elements: sample sites, distribution system, storage tanks, source water, etc. If the number of positive samples is below the required action level then no assessment is performed. E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. When E. coli bacteria are found, this indicates the need to look for potential problems in water treatment or distribution. When this occurs, systems are required to conduct level 2 assessment(s) to identify problems and to correct any problems that were found during these assessments.

Disinfectants and Disinfection By-Products

<table>
<thead>
<tr>
<th>Disinfectants and Disinfection By-Products</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Haloacetic Acids (HAA)</td>
<td>2018</td>
<td>31.8</td>
<td>13.8 - 31.8</td>
<td>60</td>
<td>ppb</td>
<td>NO</td>
<td>By-product of drinking water disinfection.</td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (THM)</td>
<td>2018</td>
<td>42.8</td>
<td>14.7 - 42.6</td>
<td>80</td>
<td>ppb</td>
<td>NO</td>
<td>By-product of drinking water disinfection.</td>
<td></td>
</tr>
<tr>
<td>Bromate</td>
<td>2018</td>
<td>Lower than detect level</td>
<td>0.0 - 0.0</td>
<td>5</td>
<td>10</td>
<td>ppb</td>
<td>NO By-product of drinking water contamination.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Not all sample results have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future. TCEQ only requires one sample annually for compliance testing. THMs (Total Trihalomethanes). Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Maximum Residual Disinfectant Level

<table>
<thead>
<tr>
<th>Disinfectant Type</th>
<th>Year</th>
<th>Average Level of Quarterly Data</th>
<th>Lowest Result of Single Sample</th>
<th>Highest Result of Single Sample</th>
<th>MRDL</th>
<th>MRDLG</th>
<th>Units</th>
<th>Source of Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine Residuals (Chloramines)</td>
<td>2018</td>
<td>2.96</td>
<td>1.00</td>
<td>3.90</td>
<td>4.0</td>
<td><4.0</td>
<td>ppm</td>
<td>Disinfectant used to control microbes.</td>
</tr>
<tr>
<td>Chlorine Dioxide</td>
<td>2018</td>
<td>0.012</td>
<td>0</td>
<td>0.48</td>
<td>1.0</td>
<td>N/A</td>
<td>ppm</td>
<td>Disinfectant.</td>
</tr>
</tbody>
</table>

Unregulated Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>Units</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromoform</td>
<td>2018</td>
<td>4.22</td>
<td>1.00 - 4.22</td>
<td>ppb</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>2018</td>
<td>14.30</td>
<td>5.77 - 14.30</td>
<td>ppb</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>2018</td>
<td>12.50</td>
<td>3.82 - 12.50</td>
<td>ppb</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

NOTE: Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Chloroform, chloroform, bromoform, and dibromochloromethane are disinfectant byproducts. There are no maximum contaminant levels for these chemicals at the entry point to distribution. For additional information and data visit www.epa.gov/stackwatermonitoring or call the Safe Drinking Water Hotline at (800) 426-4791.

Lead and Copper

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date Sampled</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th># Sites Over AL</th>
<th>Range</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>2017</td>
<td>1.3</td>
<td>0.6816</td>
<td>0</td>
<td>0.076 - 0.798</td>
<td>ppm</td>
<td>NO</td>
<td>Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.</td>
</tr>
<tr>
<td>Lead</td>
<td>2017</td>
<td>15</td>
<td>0.00285</td>
<td>0</td>
<td><0.00100 - 0.04590</td>
<td>ppb</td>
<td>NO</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
</tr>
</tbody>
</table>

ADDITIONAL HEALTH INFORMATION FOR LEAD: Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than the levels in the community as a result of materials used in your home’s plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap for 30 seconds to two minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline at (800) 426-4791.
Regulated Contaminants at the Treatment Plant (NTMWD)

<table>
<thead>
<tr>
<th>Inorganic Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Possible Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>6</td>
<td>6</td>
<td>ppb</td>
<td>NO</td>
<td>Discharge from petroleum refineries, fire retardants, ceramics; electronics; solder, and test addition.</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>0</td>
<td>10</td>
<td>ppb</td>
<td>NO</td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass and electronic production wastes.</td>
</tr>
<tr>
<td>Barium</td>
<td>2018</td>
<td>0.068</td>
<td>0.058 - 0.068</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>NO</td>
<td>Discharge of drilling wastes, discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td>Beryllium</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>4</td>
<td>4</td>
<td>ppb</td>
<td>NO</td>
<td>Corrosion of water plants; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>5</td>
<td>5</td>
<td>ppb</td>
<td>NO</td>
<td>Corrosion of water plants; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td>Chromium</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>100</td>
<td>100</td>
<td>ppb</td>
<td>NO</td>
<td>Erosion of natural deposits; water additive which promotes strong body; discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2018</td>
<td>0.264</td>
<td>0 - 0.264</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>NO</td>
<td>Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from oil production.</td>
</tr>
<tr>
<td>Mercury</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>2</td>
<td>2</td>
<td>ppb</td>
<td>NO</td>
<td>Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from oil production.</td>
</tr>
<tr>
<td>Nitrate (measured as Nitrogen)</td>
<td>2018</td>
<td>0.503</td>
<td>0.022 - 0.503</td>
<td>10</td>
<td>10</td>
<td>ppm</td>
<td>NO</td>
<td>Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Selenium</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>50</td>
<td>50</td>
<td>ppb</td>
<td>NO</td>
<td>Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.</td>
</tr>
<tr>
<td>Tellurium</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>0.5</td>
<td>2</td>
<td>ppb</td>
<td>NO</td>
<td>Discharge from electronics, glass, and leaching from pre-processing sites; drug factories.</td>
</tr>
</tbody>
</table>

Secondary and Other Constituents Not Regulated

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>Units</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>ppm</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Calcium</td>
<td>2018</td>
<td>55.3</td>
<td>35.8 - 55.3</td>
<td>ppm</td>
<td>Abundant naturally occurring element.</td>
</tr>
<tr>
<td>Chloride</td>
<td>2018</td>
<td>93.7</td>
<td>30.8 - 93.7</td>
<td>ppm</td>
<td>Abundant naturally occurring element; used in water purification, byproduct of oil field activity.</td>
</tr>
<tr>
<td>Iron</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>ppm</td>
<td>Erosion of natural deposits; iron or steel water delivery equipment facilities.</td>
</tr>
<tr>
<td>Manganese</td>
<td>2018</td>
<td>0.0064</td>
<td>0.0037 - 0.0064</td>
<td>ppm</td>
<td>Abundant naturally occurring element.</td>
</tr>
<tr>
<td>Nickel</td>
<td>2018</td>
<td>0.0055</td>
<td>0.0043 - 0.0055</td>
<td>ppm</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Silver</td>
<td>2018</td>
<td>0.001</td>
<td>0 - 0.001</td>
<td>ppm</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Sodium</td>
<td>2018</td>
<td>88.6</td>
<td>86.8 - 88.6</td>
<td>ppm</td>
<td>Erosion of natural deposits; byproduct of oil field activity.</td>
</tr>
<tr>
<td>Sulfate</td>
<td>2018</td>
<td>134</td>
<td>86 - 134</td>
<td>ppm</td>
<td>Naturally occurring; common industrial byproduct; byproduct of oil field activity.</td>
</tr>
<tr>
<td>Total Alkalinity as CaCO3</td>
<td>2018</td>
<td>101</td>
<td>65 - 101</td>
<td>ppm</td>
<td>Naturally occurring soluble mineral salts.</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>2018</td>
<td>556</td>
<td>288 - 556</td>
<td>ppm</td>
<td>Total dissolved mineral constituents in water.</td>
</tr>
<tr>
<td>Total Hardness as CaCO3</td>
<td>2018</td>
<td>188</td>
<td>105 - 188</td>
<td>ppm</td>
<td>Natural occurring calcium.</td>
</tr>
<tr>
<td>Zinc</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>ppm</td>
<td>Moderately abundant naturally occurring element used in the metal industry.</td>
</tr>
</tbody>
</table>

Radioactive Contaminants

<table>
<thead>
<tr>
<th>Radioactive Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta/particle emitters</td>
<td>2018</td>
<td>8.0</td>
<td>8.0 - 8.0</td>
<td>50</td>
<td>50</td>
<td>pCi/L</td>
<td>NO</td>
<td>Decay of natural and man-made deposits.</td>
</tr>
<tr>
<td>Gross alpha excluding radon and uranium</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>0</td>
<td>15</td>
<td>pCi/L</td>
<td>NO</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Radium</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>0</td>
<td>5</td>
<td>pCi/L</td>
<td>NO</td>
<td>Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Cryptosporidium and Giardia

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>Units</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptosporidium</td>
<td>2018</td>
<td>0</td>
<td>0 - 0</td>
<td>(Ox) Cysts/L</td>
<td>Human and animal fecal waste.</td>
</tr>
<tr>
<td>Giardia</td>
<td>2018</td>
<td>0</td>
<td>0 - 0</td>
<td>(Ox) Cysts/L</td>
<td>Human and animal fecal waste.</td>
</tr>
</tbody>
</table>

Synthetic organic contaminants including pesticides and herbicides

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>Units</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>2018</td>
<td>0.30</td>
<td>0.20 - 0.30</td>
<td>ppm</td>
<td>Runoff from herbicide used on row crops.</td>
</tr>
<tr>
<td>Di (2-ethylhexyl) phthalate</td>
<td>2018</td>
<td>Levels lower than detect level</td>
<td>0 - 0</td>
<td>6</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome.

Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.
Turbidity

<table>
<thead>
<tr>
<th>Highest single measurement</th>
<th>Level Detected</th>
<th>Violation</th>
<th>Likely Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NTU</td>
<td>0.45</td>
<td>NO</td>
<td>Soil runoff.</td>
</tr>
<tr>
<td>Lowest monthly percentage (%) meeting limit</td>
<td>0.3 NTU</td>
<td>99.10%</td>
<td>NO</td>
</tr>
</tbody>
</table>

NOTE: Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

Total Organic Carbon

<table>
<thead>
<tr>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>Units</th>
<th>Likely Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Water</td>
<td>4.70</td>
<td>3.68 - 4.70</td>
<td>ppm</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>3.00</td>
<td>1.85 - 3.00</td>
<td>ppm</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Removal Ratio</td>
<td>54.4%</td>
<td>26.5 - 54.4</td>
<td>% removal</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTE: Total organic carbon (TOC) has no health effects. The disinfectant can combine with TOC to form disinfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA) which are reported elsewhere in this report.

*Removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed.

Richardson City Council

Mayor
Paul Voelker

Place 1
Bob Dubey

Place 2
Mark Solomon (Mayor Pro Tem)

Place 3
Scott Dunn

Place 4
Mabel Simpson

Place 5
Marta Gomez Frey

Place 6
Steve Mitchell

The Public Services Department is responsible for your water distribution and infrastructure system maintenance and is part of the City government. The City Council meets on the second and fourth Monday of each month at 7:00 p.m. in the City Hall Council Chambers.

Important Communication Links

- **Maintenance/Emergency Service** (24 hours/day, 7 days/week) | (972) 744-4111
- **Water Utilities Administration** (8:00 am – 5:00 p.m., Mon.-Fri) | (972) 744-4228
- **Customer Service Billing Information** | (972) 744-4120

Mailing addresses:
Richardson Water Utilities
P.O. Box 830309
Richardson, Texas 75083

Web Pages:
- City of Richardson – http://www.cor.net/

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (972) 744-4111
APPENDIX K

Noise Analysis/Airport Hazards Documentation
Circle Search For Airports Results

Records 1 to 10 of 10

<table>
<thead>
<tr>
<th>Locator Id</th>
<th>Name</th>
<th>Site Type</th>
<th>City</th>
<th>State</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Distance (NM)</th>
<th>Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>A05</td>
<td>ADDISON</td>
<td>Airport</td>
<td>DALLAS</td>
<td>TX</td>
<td>32° 58' 6.80" N</td>
<td>96° 50' 11.20" W</td>
<td>5.08</td>
<td>92.06°</td>
</tr>
<tr>
<td>T57</td>
<td>GARLAND/DFW HELPLEX</td>
<td>Heliport</td>
<td>GARLAND</td>
<td>TX</td>
<td>32° 53' 15.45" N</td>
<td>96° 41' 0.99" W</td>
<td>5.35</td>
<td>330.57°</td>
</tr>
<tr>
<td>F69</td>
<td>AIR PARK-DALLAS</td>
<td>Airport</td>
<td>DALLAS</td>
<td>TX</td>
<td>33° 1' 24.44" N</td>
<td>96° 50' 13.01" W</td>
<td>6.17</td>
<td>124.17°</td>
</tr>
<tr>
<td>DAL</td>
<td>DALLAS LOVE FIELD</td>
<td>Airport</td>
<td>DALLAS</td>
<td>TX</td>
<td>32° 50' 45.40" N</td>
<td>96° 51' 3.16" W</td>
<td>9.22</td>
<td>39.07°</td>
</tr>
<tr>
<td>T643</td>
<td>PARKLAND HEALTH & HOSPITAL SYS...</td>
<td>Heliport</td>
<td>DALLAS</td>
<td>TX</td>
<td>32° 48' 35.14" N</td>
<td>96° 50' 22.20" W</td>
<td>10.69</td>
<td>29.33°</td>
</tr>
<tr>
<td>X461</td>
<td>BAYLOR UNIVERSITY MEDICAL CENTER</td>
<td>Heliport</td>
<td>DALLAS</td>
<td>TX</td>
<td>32° 47' 17.99" N</td>
<td>96° 46' 48.36" W</td>
<td>10.84</td>
<td>11.93°</td>
</tr>
<tr>
<td>497</td>
<td>DALLAS CBD VERTIPORT</td>
<td>Heliport</td>
<td>DALLAS</td>
<td>TX</td>
<td>32° 46' 18.20" N</td>
<td>96° 48' 7.40" W</td>
<td>12.07</td>
<td>16.1°</td>
</tr>
<tr>
<td>X462</td>
<td>METHODIST DALLAS MEDICAL CENTER</td>
<td>Heliport</td>
<td>DALLAS</td>
<td>TX</td>
<td>32° 45' 37.73" N</td>
<td>96° 49' 27.84" W</td>
<td>13.06</td>
<td>20.03°</td>
</tr>
<tr>
<td>T31</td>
<td>AERO COUNTRY</td>
<td>Airport</td>
<td>MC KINNEY</td>
<td>TX</td>
<td>33° 12' 30.42" N</td>
<td>96° 44' 30.99" W</td>
<td>14.55</td>
<td>178.75°</td>
</tr>
<tr>
<td>TKI</td>
<td>MCKINNEY NATIONAL</td>
<td>Airport</td>
<td>DALLAS</td>
<td>TX</td>
<td>33° 10' 37.44" N</td>
<td>96° 35' 19.56" W</td>
<td>14.67</td>
<td>210.35°</td>
</tr>
</tbody>
</table>

Records 1 to 10 of 10

Rows per Page: 20

Page: 1
Airports within 15,000 feet
Rods within 1,000 feet

December 3, 2019

1:4,514

0 0.05 0.1 0.2 mi

0 0.675 0.15 0.3 km

© 2019 Microsoft Corporation & 2019 HERE

https://map22.epa.gov/arcgis/rest/directories/arcgis/output/Utilities/PrintingTools_GPServer/_ags_4d4e945e5dccc8dd8ee8055537782c60.jpg

1/1
Railroads within 3,000 feet
APPENDIX L

Nuisances and Hazards Documentation
Legend

- **Gas Transmission Pipelines**
- **Hazardous Liquid Pipelines**

 Pipelines depicted on this map represent gas transmission and hazardous liquid lines only. Gas gathering and gas distribution systems are not represented.

 This map should never be used as a substitute for contacting a one-call center prior to excavation activities. Please call 811 before any digging occurs.

 Questions regarding this map or its contents can be directed to npms@dot.gov.

 Projection: Geographic

 Datum: NAD83

 Map produced by the Public Viewer application at www.npms.phmsa.dot.gov

 Date Printed: Dec 03, 2019

Subject Property

https://pvpms.phmsa.dot.gov/PublicViewer/#
APPENDIX M

Previous Phase I Environmental Site Assessment
Phase I Environmental Site Assessment Report

Brandywine Apartments
500 Rockingham Lane
Richardson, TX 75080

Prepared for:
Franciscan Ministries
26 W 171 Roosevelt Road
Wheaton, IL 60187,

Prepared by:
f3, inc.
15 Ellis Avenue
Troy, MO 63379

Report Date: May 06, 2015
f3, inc. Project Number 15.0139

Table of Contents

1.0 Introduction... 1
2.0 Executive Summary.. 2
 2.1 Subject Property Description.. 2
 2.2 Data Gaps... 2
 2.3 Environmental Report Summary................................ 2
 2.4 Recommendations.. 3
3.0 Introduction.. 4
 3.1 Purpose.. 4
 3.2 Scope of Work.. 4
 3.3 Significant Assumptions.. 4
 3.4 Limitations and Exceptions...................................... 4
 3.5 Deviations... 5
 3.6 Special Terms and Conditions................................. 5
 3.7 Reliance... 5
4.0 Site Description... 6
 4.1 Location and Legal Description................................. 6
 4.2 Site and Vicinity Description.................................... 6
 4.3 Current Use of Property.. 6
 4.4 Description of Structures and Other Improvements.... 6
 4.5 Adjoining Property Information............................... 7
5.0 User Provided Information.. 8
 5.1 Title Records.. 8
 5.2 Environmental Liens or Activity and Use Limitation.... 8
 5.3 Specialized Knowledge... 8
 5.4 Commonly Known or Reasonably Ascertainable Information... 8
 5.5 Valuation Reduction for Environmental Issues.......... 8
 5.6 Owner, Property Manager, and Occupant Information. 8
 5.7 Reason For Performing Phase I ESA......................... 8
 5.8 Other.. 9
6.0 Records Review.. 10
 6.1 Standard Environmental Records Sources.................. 10
 6.2 Additional Environmental Record Sources............... 11
 6.3 Physical Setting Sources... 11
 6.3.1 Topography... 11
 6.3.2 Surface Water Bodies.. 11
 6.3.3 Geology and Hydrology.................................... 12
 6.4 Historical Use.. 13
 6.4.1 Historical Summary.. 13
 6.4.2 City Directories... 13
 6.4.3 Aerial Photos... 13
 6.4.4 Sanborn/Historical Maps.................................. 14
 6.4.5 Historical Topographic Maps............................ 15
 6.4.6 Other Environmental Reports......................... 15
 6.4.7 Building Department Records........................... 15
 6.4.8 Other Land Use Records.................................. 15
7.0 Site Reconnaissance.. 16
 7.1 Methodology and Limiting Conditions....................... 16
 7.2 General Site Setting... 16
 7.3 Site Visit Findings.. 16

15 Ellis Avenue, Troy, Missouri 63379
ph: 636.462.4132 fax: 636.462.4139
1.0 INTRODUCTION

Project Information:
Brandywine Apartments
Project Number: 15.0139

Consultant Information:
f3, inc.
15 Ellis Avenue
Troy, MO 63379
Phone: 972-769-2529
Fax: E-mail Address: ekleppe@f3inc.net

Report Date: 4/21/15
Site Assessor
Erin Kleppe - Project Engineer

Site Information:
Brandywine Apartments
500 Rockingham Lane
Richardson, TX 75080
County: Dallas
Latitude, Longitude: 32.965200, -96.735800
Site Access Contact: Lea Ann Wilson

Client Information:
Franciscan Ministries
Shari L. Koehler
26 W 171 Roosevelt Road
Wheaton, IL 60187

Certification:
I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in 40 CFR Part 312. I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. I have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Chris Davis - Principal
2.0 EXECUTIVE SUMMARY

2.1 Subject Property Description

F3, Inc. conducted a Phase I Environmental Site Assessment of the Property known as Brandywine Apartments located at 500 Rockingham Lane in Richardson, Dallas County, TX 75080 (the “Property”) at the request of Franciscan Ministries of Wheaton, Illinois.

As part of this assessment, a site visit was conducted on April 21, 2015 by Erin Kleppe of F3, Inc. The assessment included a request for available information and documentation for the Property. Photographs taken during the site visit are included in the Appendix.

The site was originally developed in 1980 for multi-family residential use. Prior to construction of the current improvements the Property was undeveloped or farmland.

The Property is located in a mixed-use neighborhood. Adjacent properties include vacant land and Northrich Baptist Church to the south across Rockingham Lane, single-family residences to the north and east, and Camelot Apartments to the west.

The Property consists of a rectangular-shaped parcel of land containing approximately 4.170 acres. The site is moderately landscaped with trees, shrubs and plantings. Wood privacy fencing is present along the west perimeter, and vinyl fencing is located along the north and east perimeters.

Building improvements at the Property consist of 5 single-story apartment buildings totaling approximately 36,266 rentable square feet, and a single story office/club house building. Construction is typical light wood framing with slab on grade foundations. Exterior finishes consist of brick veneer with T1-11 siding and wood trim. The pitched roofs contain asphalt composition shingle coverings. Units are heated by a typical residential split system with electric furnaces. Cooling is provided by pad mounted A/C condensing units. Domestic hot water is provided by closet mounted electric water heaters. Domestic water lines are copper and the sanitary lines are galvanize steel and PVC. Electrical wiring was observed as copper.

Interior finishes of the units consist of carpet flooring at living and bedroom areas, vinyl flooring at kitchen and bathrooms areas, painted drywall walls and ceilings. Kitchens contain plastic laminate countertops and wood cabinetry. Bathrooms contain wood cabinets with porcelain sinks and baked enamel tubs with a fiberglass surround or open shower stalls finished with ceramic tiles.

The Property contains concrete paved parking and driveways including approximately 51 parking spaces.

The Property is zoned A-950-M, Apartment District, by the Richardson Development Services.

2.2 Data Gaps

Data gaps in information exist and are addressed in the appropriate sections of this report. However, because the data gaps were not determined to be material in identifying Recognized Environmental Conditions (RECs) they are not considered by ASTM standards to be significant and therefore, are not individually addressed in this report.

2.3 Environmental Report Summary

F3, Inc. has performed an Environmental Site Assessment, in conformance with the Scope of Work developed in cooperation with the client and the provisions of ASTM Practice E 1527-13. Any exceptions to, or deletions from, this practice are described in Appendix E of this report.

Within the scope of this investigation, F3, Inc. discovered no evidence of recognized environmental conditions or significant environmental concerns in connection with the subject property. The following non-ASTM items were identified:

• Based on the scope of work and date of construction (1980), it is likely that asbestos containing materials are present at the Property. According to the EPA, asbestos containing material (ACM) and potential asbestos containing material (PACM) that is intact and in good condition can, in general, be managed safely in-place under and O&M program until removal is dictated by renovation, demolition or deteriorating material condition.

<table>
<thead>
<tr>
<th>Report Section</th>
<th>No Further Action</th>
<th>REC</th>
<th>HREC</th>
<th>CREC</th>
<th>Issue/Further Investigation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4 Recommendations

Based on the findings in this ESA F3, Inc. recommends the following:

• An Asbestos Operations and Maintenance (O&M) Program should be implemented in order to safely manage the suspect asbestos-containing material located at the Property.
3.0 INTRODUCTION

3.1 Purpose

f3, Incorporated, (f3, inc.) was retained by Franciscan Ministries to conduct a Phase I Environmental Site Assessment (ESA) of Brandywine Apartments located at 500 Rockingham Lane, Richardson, Texas 75080 (the Property). The protocol used for this assessment is in general conformance with ASTM E 1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process.

On April 21, 2015, Erin Kleppe of f3, inc., conducted a site reconnaissance to assess the possible presence of petroleum products and hazardous materials at the Property. f3, inc.’s investigation included review of aerial photos, reconnaissance of adjacent properties, background research, and review of available local, state, and federal regulatory records regarding the presence of petroleum products and/or hazardous materials at the Property.

f3, inc. contracted Environmental Data Resources of Milford, Connecticut, to perform a computer database search for local, state, and federal regulatory records pertaining to environmental concerns for the Property and properties in the vicinity of the Property (see Section 6.0).

The conclusions and findings set forth in this report are strictly limited in time and scope to the date of the evaluations. The conclusions presented in the report are based solely on the services described therein, and not on scientific tasks or procedures beyond the scope of agreed-upon services or the time and budgeting restraints imposed by the client. No subsurface exploratory drilling or sampling was done under the scope of this work. Recognized Environmental Conditions (as defined by ASTM Standard E-1527-13) in connection with the Property.

f3, inc. understands that the findings of this study will be used by the Client to evaluate a pending financial transaction in connection with the Property.

3.2 Scope of Work

The scope of work for this ESA is in general accordance with the requirements of ASTM Standard E 1527-13. f3, inc. warrants that the findings and conclusions contained herein were accomplished in accordance with the methodologies set forth in the Scope of Work. These methodologies are described as representing good commercial and customary practice for conducting an Environmental Site Assessment of a property for the purpose of identifying recognized environmental conditions.

No other warranties are implied or expressed.

3.3 Significant Assumptions

There is a possibility that even with the proper application of these methodologies there may exist on the Subject Property conditions that could not be identified within the scope of the assessment or which were not reasonably identifiable from the available information. f3, inc. believes that the information obtained from the record review, and the interviews concerning the site is reliable. However, f3, inc. cannot and does not warrant or guarantee that the information provided by these other sources is accurate or complete. The methodologies of this assessment are not intended to produce all inclusive or comprehensive results, but rather to provide Franciscan Ministries with information relating to the Subject Property.

3.4 Limitations and Exceptions

The findings and conclusions contain the limitations inherent in these methodologies that are referred to in ASTM 1527-13. Specific limitations and exceptions to this ESA are more specifically set forth below:

During the site inspection, inaccessible areas of the Property including beneath parked motor vehicles, or under manholes were not inspected by f3, inc. The inability to inspect these areas does not represent a concern.

Historical and environmental information pertaining to the Property has been included in this report to the extent that such information is “publicly available” and “practically reviewable,” as defined in the above-referenced standard practice.

Historical documentation prior to 1942 could not be obtained for review by f3, inc. Based on the historical information obtained and reviewed by f3, inc., it is f3, inc.’s opinion that the absence of pre-1942 historical information does not represent a concern and has not hindered the ability to identify previous uses at the Property and/or surrounding area that may have impacted the Property.

f3, inc. reviewed an environmental database search report. f3, inc.’s conclusions based on the search report are limited to the accuracy of that report. To the extent possible, f3, inc.’s field observations are used to verify the information or identify errors and inconsistencies in the search report regarding the listed facilities in the immediate vicinity of the Property.

3.5 Deviations

No significant deviations from the recommended scope of ASTM Standard E 1527-13 were performed as part of this Phase I ESA with the exception of any additions noted in Detailed Scope of Services.

3.6 Special Terms and Conditions

The work performed is governed by f3, inc.’s proposal signed April 9, 2015.

The conclusions and findings set forth in this report are strictly limited in time and scope to the date of the evaluations. The conclusions presented in the report are based solely on the services described therein, and not on scientific tasks or procedures beyond the scope of agreed-upon services or the time and budgeting restraints imposed by the client. No subsurface exploratory drilling or sampling was done under the scope of this work. Unless specifically stated otherwise in the report, no chemical analyses have been performed during the course of this ESA.

Some of the information provided in this report is based upon personal interviews, and research of available documents, records, and maps held by the appropriate government and private agencies. This is subject to the limitations of historical documentation, availability, and accuracy of pertinent records and the personal recollections of those persons contacted.

3.7 Reliance

This report is prepared solely for the use and benefit of Franciscan Ministries in accordance with ASTM Standard E 1527-13. This report is not intended to provide advice or guidance with regard to the purchase of the real estate referenced herein. The report represents an assessment of the historic use of the property and identification of any recognized environmental conditions (RECs) of the buildings and Property based upon limited site observation of readily accessible and visible components, and professional judgment, and is current only as of the date of the site observation.

The ESA (including any supplements, updates or addenda) must be addressed to, and authorize reliance by, the lender and their respective successors and assigns. The property assessed by the ESA must include the entire Property owned or leased by the Borrower and that will secure the Mortgage Loan.
4.0 SITE DESCRIPTION

4.1 Location and Legal Description

The address of the Property is 500 Rockingham Lane, Richardson, Texas 75080. The Property is located in a mixed use area of within an incorporated area of the City of Richardson. The surrounding areas include single- and multi-family residential, vacant land, a church, and a retail center. According to Dallas County Appraisal District, the assessor's parcel number for the Property is 4210395001001000.

According to the Dallas County Appraisal District, the Property is currently owned by Enterprise Housing Brandywine, Inc. who has owned the Property since 2009.

4.2 Site and Vicinity Description

The Property consists of a rectangular-shaped parcel of land containing approximately 4.17 acres. Improvements at the Property consist of 5 single-story apartment buildings containing a total of 50 apartments. The Property is relatively flat with a slight gradient to the southwest and is attractively landscaped with mature trees, shrubs, plantings, and lawn areas. Wood privacy fencing is present along the west perimeter of the Property, and vinyl fencing is present along the north and east perimeters. The Property is zoned A-950-M SPL, Apartment District, by the Richardson Development Services Department and is in conformance with the city zoning requirements.

The Property is located in a mixed-use neighborhood. Adjacent properties include single-family residences to the north and east, vacant land and Northrich Baptist Church to the south across Rockingham Lane, and the Camelot Apartments to the west. Vehicular access to the Property is provided from the south by two entrances off Rockingham Lane. These lead to open concrete paved drives and parking areas surrounding the Property buildings. The Property concrete paved driveways and parking areas include approximately 51 parking spaces.

4.3 Current Use of Property

The Property is currently a multi-family residential complex (Brandywine Apartments) consisting of 5 apartment buildings including 50 dwelling units.

4.4 Description of Structures and Other Improvements

Building improvements at the Property consist of 5 single-story apartment buildings totaling approximately 36,266 rentable square feet. The Property buildings were reportedly constructed in 1980. Construction is typical light wood framing with slab on grade foundations. Exterior finishes consist of brick veneer, T1-11 siding and wood trim. The pitched roofs contain asphalt composition shingle coverings. Units are heated by a typical residential split system with electric furnaces. Cooling is provided by pad mounted A/C condensing units. Domestic hot water is provided by closet mounted electric water heaters. Domestic water lines are copper and the sanitary lines are galvanized steel and PVC. Electrical wiring was observed as copper.

Interior finishes of the units consist of carpet flooring at living and bedroom areas, vinyl flooring at kitchen and bathrooms areas, painted drywall walls and ceilings. Kitchens contain plastic laminate countertops and wood cabinetry. Bathrooms contain wood cabinets with porcelain sinks and baked enamel tubs with fiberglass surrounds or open shower stalls with ceramic tiles.

The City of Richardson supplies drinking water to the Property from the municipal distribution system. Sanitary discharges on the Property are discharged into the municipal sanitary sewer system. The subject site area is serviced by the City of Richardson. Electricity is provided to the Property by TXU Energy. Natural gas is not provided to the Property.

4.5 Adjoining Property Information

During the vicinity reconnaissance, f3, inc. observed the following land use on properties in the immediate vicinity of the Property. The adjacent property use is not anticipated to negatively impact the environmental integrity of the Property.

<table>
<thead>
<tr>
<th>Direction From Site</th>
<th>Occupant</th>
<th>Use</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>Single-family houses</td>
<td>Residential</td>
<td>The adjacent property use is not anticipated to negatively impact the environmental integrity of the Property.</td>
</tr>
<tr>
<td>South</td>
<td>Vacant land and Northrich Baptist Church</td>
<td>Mixed Use</td>
<td>The adjacent property use is not anticipated to negatively impact the environmental integrity of the Property.</td>
</tr>
<tr>
<td>East</td>
<td>Single-family houses</td>
<td>Residential</td>
<td>The adjacent property use is not anticipated to negatively impact the environmental integrity of the Property.</td>
</tr>
<tr>
<td>West</td>
<td>Camelot Apartments</td>
<td>Multi-Family</td>
<td>The adjacent property use is not anticipated to negatively impact the environmental integrity of the Property.</td>
</tr>
</tbody>
</table>
5.0 USER PROVIDED INFORMATION

5.1 Title Records

The United States Environmental Protection Agency (USEPA) All Appropriate Inquiry (AAI) and ASTM 1527-13 Phase I Standards require that the User conduct independent research and consider certain information before purchasing a property. A copy of a current title was requested but not provided. f3, inc. recommends that the user document completion of the following items:

- Obtain a recent (less than 180 day old) title report prepared for the Property. The report should be reviewed to obtain information regarding environmental clean up liens or activity and use limitations with regard to the Property. If activity or use limitations are found it is the owners responsibility to provide the information to the environmental professional (f3, inc.)

5.2 Environmental Liens or Activity and Use Limitation

No information regarding environmental liens, activity and use limitations for the Property were provided by the User. Additionally, the site contact was not aware of any environmental liens or activity limitations associated with the Property.

5.3 Specialized Knowledge

No specialized knowledge of environmental conditions associated with the Property was provided by the User. Additionally, the site contact was not aware of any environmental conditions associated with the Property.

5.4 Commonly Known or Reasonably Ascertainable Information

No other commonly known or reasonably ascertainable information associated with the Property were provided by the User. Additionally, the site contact was not aware of any environmental conditions associated with the Property.

5.5 Valuation Reduction for Environmental Issues

No information regarding reductions in property value due to environmental issues was provided by the User. Additionally, the site contact was not aware of any valuation reductions associated with the Property.

5.6 Owner, Property Manager, and Occupant Information

The current owner of the Property is Enterprise Housing - Brandywine, Inc., the Property Manager is Lea Ann Wilson, and the current occupants of the Property are the Brandywine residents.

5.7 Reason For Performing Phase I ESA

The purpose of this Phase I Environmental Site Assessment (ESA) was to identify existing or potential Recognized Environmental Conditions (as defined by ASTM Standard E-1527-13) in connection with the Property. This ESA was also performed to permit the User to satisfy one of the requirements to qualify for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on scope of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (42 U.S.C. §9601) liability (hereinafter, the "landowner liability protections," or "LLPs"). ASTM Standard E-1527-13 constitutes "all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice" as defined at 42 U.S.C. §9601(35)(B).

f3, inc. understands that the findings of this study will be used by Franciscan Ministries to evaluate a pending financial transaction in connection with the Property.

5.8 Other

No other historical information, environmental documentation or otherwise relevant information pertaining to the Property was provided by the user or owner to f3, inc. for review.
6.0 RECORDS REVIEW

6.1 Standard Environmental Records Sources

Information from standard Federal and state environmental record sources was provided through Environmental Data Resources (EDR). Data from governmental agency lists are updated and integrated into one database, which is updated as these data are released. This integrated database also contains postal service data in order to enhance address matching. Records from one government source are compared to records from another to clarify any address ambiguities. The demographic and geographic information available provides assistance in identifying and managing risk. The accuracy of the geocoded locations is approximately +/-300 feet.

In some cases, location information supplied by the database provider is insufficient to allow geocoded facility locations. These facilities are listed under the unmappables section within the EDR report. A review of the unmappable facilities indicated that none of these facilities are within the ASTM minimum search distance from the Property.

Regulatory information from the following database sources regarding possible recognized environmental conditions, within the ASTM minimum search distance from the Property, was reviewed. Specific facilities are discussed below if determined likely that a potential recognized environmental condition has resulted at the Property from the listed facilities. Please refer to Appendix D for a complete listing.

The Property was not listed on the any of the databases. A total of 14 listings were identified on the databases. Of these 14 listings, all 14 listings are located over an eighth mile from the Property either cross- or down-gradient and are listed with either no violations or the release incident is closed or closure is pending. Based on the hydro-geological location of these listings and current statuses, they are not considered to be a recognized environmental condition (REC) for the Property.

There are 5 EDR Historic Auto Stations and 1 EDR Historic Cleaner sites listed in the search area. EDR's database of Historic Auto Stations and Historic Drycleaners do not provide information related to environmental regulatory actions or cleanups. These databases merely provide a list of former businesses and associated addresses. None of the listings appear to negatively impact the Property. None of the sites appear to be adjacent to the Property. F3, inc assumes that any of the inventory within the radius that are under regulation are referenced within State EPA databases, (LUST, UST, DRYCLEANERS).

6.2 Additional Environmental Record Sources

County Recorder/ Assessor
According to the Dallas County Appraisal District online records, no environmental liens or activity/use limitations are related to the Property. Online records state the current improvements were constructed in 1980.

City of Richardson - Open Records Request
According to Ms. Patti Tschirhart, City of Richardson Secretary, there are no open code violations at the Property. Online records state the current improvements were constructed in 1980.

According to Richardson Fire Marshal Steve Dossett, there are no open code violations, no records of underground tanks, or hazardous materials at the Property.

Other Agencies
The Property is connected to the city water supply provided by the City of Richardson. According to the 2014 Annual Drinking Water Quality Report, the drinking water supplied to the site is within state and federal standards, including lead and copper.

TXU Energy
F3, inc. contacted TXU Energy to verify ownership and maintenance of the transformers at the Property is the responsibility of Oncor Electric Delivery.

6.3 Physical Setting Sources

Additional information regarding the geologic, hydrogeologic, hydrologic and topographic characteristics of the Property was obtained for this assessment.

6.3.1 Topography

The United States Geological Survey (USGS), Garland, Texas Quadrangle 7.5 minute series topographic map was reviewed for this ESA. This map was published by the USGS in 1973. According to the contour lines on the topographic map, the Property is located at approximately 642 feet above mean sea level (MSL). The contour lines in the area of the Property indicate the area is sloping moderately to the west-southwest toward a tributary of White Rock Creek.

6.3.2 Surface Water Bodies

The nearest surface water in the vicinity of the Property is White Rock Creek located to the southwest of the Property approximately one-half miles.
6.3.3 Geology and Hydrology

Soils
Soil Component Name: Houston Black
Soil Surface Texture: clay
Hydrologic Group: Class D - Very slow filtration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer.
Soil Drainage Class: Moderately well drained
Hydric Status: Unknown
Corrosion Potential - Uncoated Steel: High
Depth to Bedrock Min: > 0 inches
Depth to Watertable Min: > 0 inches

Soil Component Name: Austin
Soil Surface Texture: silty clay
Hydrologic Group: Class C - Slow filtration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
Soil Drainage Class: Well drained
Hydric Status: Unknown
Corrosion Potential - Uncoated Steel: High
Depth to Bedrock Min: > 0 inches
Depth to Watertable Min: > 0 inches

Hydrology

Soil Component Name: Austin
Soil Surface Texture: silty clay
Hydrologic Group: Class C - Slow filtration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
Soil Drainage Class: Well drained
Hydric Status: Unknown
Corrosion Potential - Uncoated Steel: High
Depth to Bedrock Min: > 0 inches
Depth to Watertable Min: > 0 inches

Geology

ROCK STRATIGRAPHIC UNIT
Era: Mesozoic
System: Cretaceous
Series: Austin and Eagle Ford Groups
Code: uk2 (decoded above as Era, System & Series)

Aerial Photos Summary
Date(s)	Property Comments	Surrounding Area Comments
1942 | The Property is depicted as undeveloped land. | The surrounding area is primarily undeveloped land or farmland.
1950 | The Property is depicted as undeveloped land. | The surrounding area is primarily undeveloped land or farmland.
1958 | The Property is depicted as undeveloped land. | The surrounding area is primarily undeveloped land or farmland.
1968 | The Property is depicted as undeveloped land. | The surrounding areas are depicted with single-family homes to the north, vacant land to the east (beyond which are single-family homes), and vacant land to the west. A retail center is located to the southwest. Additionally, vacant land and a church are located to the south.
1972 | The Property is depicted as undeveloped land. | The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.

6.4 Historical Use

6.4.1 Historical Summary
Prior to its current developments the Property was undeveloped. The current Property buildings have not been utilized for environmentally sensitive purposes, such as photo developing or dry cleaning. No conditions observed are currently considered to be a REC.
Review of the standard historical sources did not yield evidence that storage tanks and vessels used for the storage of hazardous materials or petroleum products were present on the Property.
Review of the standard historical sources did not yield evidence of significant usage of hazardous materials or petroleum products on the adjoining properties.

6.4.2 City Directories
Historical City directories were researched at EDR for past names and/or businesses. Environmental Data Resources, Inc. was contracted to provide city directories for the Property. Based upon EDR’s research the Property address is not listed in the 1966 - 1976 directories. The Property address is identified as Brandywine Apartments in the 1981 to 2013 directories. Surrounding addresses were listed as apartments and did not indicate environmentally sensitive purposes.

A copy of EDR’s coverage is included in the Appendix.

6.4.3 Aerial Photos
<table>
<thead>
<tr>
<th>Date(s)</th>
<th>Property Comments</th>
<th>Surrounding Area Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>The Property is depicted as undeveloped land.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
<tr>
<td>1984</td>
<td>The Property is depicted with its current improvements.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
<tr>
<td>1989</td>
<td>The Property is depicted with its current improvements.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
<tr>
<td>1990</td>
<td>The Property is depicted with its current improvements.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
<tr>
<td>1995</td>
<td>The Property is depicted with its current improvements.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
<tr>
<td>2005</td>
<td>The Property is depicted with its current improvements.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
<tr>
<td>2008</td>
<td>The Property is depicted with its current improvements.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
<tr>
<td>2010</td>
<td>The Property is depicted with its current improvements.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
<tr>
<td>2012</td>
<td>The Property is depicted with its current improvements.</td>
<td>The surrounding areas are depicted with single-family homes to the north and east, apartments to the west, and vacant land and a church to the south. Additionally, a retail center is located to the southwest.</td>
</tr>
</tbody>
</table>

6.4.5 Historical Topographic Maps

The United States Geological Survey (USGS), Garland, Texas Quadrangle 7.5 minute series topographic maps were reviewed for this assessment. These maps were published by the USGS in 1893, 1959, 1968, and 1973. No recognized environmental concerns were revealed on or adjacent to the Property on the maps. The maps are discussed below. Copies of the historical topographic maps are included in Appendix.

Historical Topographic Maps Summary

<table>
<thead>
<tr>
<th>Date(s)</th>
<th>Quad</th>
<th>Property Comments</th>
<th>Surrounding Area Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1893</td>
<td>DALLAS</td>
<td>No structures shown.</td>
<td>No structures shown.</td>
</tr>
<tr>
<td>1959</td>
<td>GARLAND</td>
<td>No structures shown.</td>
<td>The Property is included in a pink-shaded area indicating urban development.</td>
</tr>
<tr>
<td>1968</td>
<td>GARLAND</td>
<td>No structures shown.</td>
<td>The Property is included in a pink-shaded area indicating urban development.</td>
</tr>
<tr>
<td>1973</td>
<td>GARLAND</td>
<td>No structures shown.</td>
<td>The Property is included in a pink-shaded area indicating urban development.</td>
</tr>
</tbody>
</table>

6.4.6 Other Environmental Reports

F3, inc. was not provided any previous environmental reports for this assessment.

6.4.7 Building Department Records

According to the Dallas County Appraisal District records, the Property was constructed in 1980. Prior land is indicated as undeveloped land.

6.4.8 Other Land Use Records

Recorded Land Title Records: Dallas County Appraisal District's online records were researched. No environmentally related liens, easements or use restrictions associated with the Property were identified.

Zoning/Land Use Records: The Property is zoned A-950-M, Apartment District, by the Richardson Development Services.

Property Tax Files: Information regarding the Property was obtained at the Dallas County Appraisal District website. The online records indicate that Enterprise Housing Brandywine, Inc. currently owns the Property. The current improvements were developed in 1980. The account number assigned to the Property is 42103952010010000. Previous owner's names were not available.

Other Historical Sources: No other historical record sources were reviewed at the time of the assessment.

6.4.4 Sanborn/Historical Maps

Fire insurance maps that include the Property were requested from Environmental Data Resources, Inc. (EDR) of Milford, Connecticut. EDR has informed F3, inc. that no historical map coverage is available for the Property in the EDR historical map collection. As a general rule, the absence of historical maps for a given area tends to support evidence that the area was not significantly developed.

A copy of EDR's statement of no coverage is included in the Appendix.
7.0 SITE RECONNAISSANCE

7.1 Methodology and Limiting Conditions

The Property was inspected by Erin Kleppe on April 21, 2015. The weather at the time of the site visit was rainy and approximately 60 degrees. Ms. Lea Ann Wilson, Property Manager provided site access and escorted f3, inc. during the survey. The Site reconnaissance consisted of observing the boundaries of the property and walking through the site to provide an overlapping field of view, wherever possible. The periphery of the on-site structures was observed along with interior accessible common areas, tenant areas, storage and maintenance areas. No road or path was identified on the Property as likely to have been used as an avenue for the disposal of hazardous substances or petroleum products.

7.2 General Site Setting

The Property consists of a rectangular-shaped parcel of land containing approximately 4.170 acres acres. The Property is relatively flat with a slight gradient to the southwest and is moderately landscaped with trees, shrubs and plantings. Wood privacy fencing is present along the west perimeter, and vinyl fencing is located along the north and east perimeters. The Property contains concrete paved parking and driveways including approximately 51 parking spaces, which are accessible from two vehicular entrances off Rockingham Lane.

Building improvements at the Property consist of 5 single-story apartment buildings totaling approximately 36,266 rentable square feet, and a single story office/club house building. Construction is typical light wood framing with slab on grade foundations. Exterior finishes consist of brick veneer with T1-11 siding and wood trim. The pitched roofs contain asphalt composition shingle coverings. Units are heated by a typical residential split system with electric furnaces. Cooling is provided by pad mounted A/C condensing units. Domestic hot water is provided by closet mounted electric water heaters. Domestic water lines are copper and the sanitary lines are galvinized steel and PVC. Electrical wiring was observed as copper.

7.3 Site Visit Findings

7.3.1 Hazardous Substances

No obvious indications of hazardous waste generation, storage or disposal were observed on the Property or were indicated during interviews.

7.3.2 Petroleum Products

No significant quantities of petroleum products were observed during the Site reconnaissance.

7.3.3 USTs

No evidence of underground storage tanks was observed during the Site reconnaissance or reported during interviews.

7.3.4 ASTs

No evidence of aboveground storage tanks was observed during the Site reconnaissance or reported during interviews.

7.3.5 Other Suspect Containers

No other suspect containers or drums were observed during the Site reconnaissance.

7.3.6 Equipment Likely to Contain PCBs

Older transformers and other electrical equipment could contain polychlorinated biphenyls (PCBs) at a level that subjects them to regulation by the U.S. EPA. PCBs in electrical equipment are controlled by United States Environmental Protection Agency regulations 40 CFR, Part 761. Under the regulations, there are three categories into which electrical equipment can be classified:

- Less than 50 parts per million (PPM) of PCBs - "Non-PCB" transformer
- 50 ppm-500 ppm - "PCB-Contaminated" electrical equipment
- Greater than 500 ppm - "PCB" transformer

f3, inc. observed several pad-mounted electrical transformers on the Property. The transformers are located adjacent to the Property buildings. No indication of staining, leaks or fire damage was observed on or around the bases of the units. Additionally, f3, inc contacted customer service at TXU telephone conversation on (April 23, 2015) who confirmed the ownership of the transformers to be Oncor Electric Delivery.

No other potential PCB-containing equipment (oil-filled switches, hoists, lifts, dock levelers, etc) expected to contain PCBs was observed on the Property during f3, inc.’s reconnaissance.

7.3.7 Interior Staining/Corrosion

No evidence of interior staining or corrosion were observed or reported during the Site reconnaissance.

7.3.8 Discharge Features

The Property is improved with the footprints of the Property buildings and associated concrete paved driving areas and concrete paved pedestrian areas. Stormwater at landscaped areas drains via ground percolation. Stormwater is drained from the building roofs via perimeter roof gutters and downspouts that drain to the ground surface or subsurface system. Surface water at paved areas is drained via sheetflow action to public right of ways or via curb inlets connected to the municipal stormwater system.

7.3.9 Pits, Ponds, And Lagoons

No evidence of on-site pits, ponds or lagoons was observed or reported during the Site reconnaissance.

7.3.10 Solid Waste Dumping/Landfills

No evidence of on-site landfilling was observed or reported during the Site reconnaissance.

7.3.11 Stained Soil/Stressed Vegetation

No obvious indications of hazardous material or petroleum product releases, such as stained areas or stressed vegetation, was observed during the Site reconnaissance or reported during interviews.

7.3.12 Wells

No aboveground evidence of wells, sump pits or floor drains was observed during the Site reconnaissance.
8.0 INTERVIEWS

Interviews were conducted with the following individuals. Findings from these interviews are discussed in the appropriate sections in this report.

Site
Ms. Lea Ann Wilson, Property Manager, 972-669-8186

Surrounding Area
Surrounding area tenants were not interviewed as owners were not present. The lack of these interviews is not a significant environmental concern due to the documented history of the Property.

Regulatory Officials
Ms. Patti Tschirhart, Records Coordinator with Richardson City Secretary's office, 972-744-4294
Mr. Steve Dossett, Richardson Fire Marshal, 972-744-5750

Others
TXU Energy, Customer Service (Chantalle), 800-316-2135

9.0 OTHER ENVIRONMENTAL CONSIDERATIONS

9.1 Asbestos-Containing Materials

Asbestos is the name for a group of naturally occurring silicate minerals that can be separated into fibers. The fibers are strong, durable, and resistant to heat and fire. They are also long, thin and flexible, so they can even be woven into cloth. Because of these qualities, asbestos has been used in thousands of consumer, industrial, maritime, automotive, scientific and building products. During the 20th century, some 30 million tons of asbestos have been used in industrial sites, homes, schools, shipyards and commercial buildings in the United States. Common ACMs include pipe-covering, insulating cement, insulating block, refractory and boiler insulation materials, transite board, fireproofing spray, joint compound, vinyl floor tile, ceiling tile, mastics, roofing products, and duct insulation for HVAC applications. Inhalation of asbestos fibers can result in deleterious health effects.

During the course of the property visit, f3, inc. performed a preliminary review of interior, accessible areas of the Property buildings for the presence of suspect asbestos-containing materials (ACMs). This limited review was conducted for overview purposes only; additional suspect materials may exist in concealed locations (behind walls and above ceilings, within machinery, etc.). Also, not all suspect materials may have been sampled due to the condition or the location of the suspect materials. Destructive sampling of suspect ACMs was not performed. Suspect ACMs in an overall undamaged condition were not sampled, as that will damage the materials. f3, inc. will not be responsible for damaging materials or causing the materials to become friable. The USEPA defines asbestos-containing material as material containing greater than one percent asbestos. This review was not a pre-demolition/renovation survey or for regulatory submittal purposes.

The level of this preliminary assessment is designed to meet the requirements of Franciscan Ministries, not intended to comply with the survey requirements of the Asbestos Hazard Emergency Response Act (AHERA) 40 CFR Part 763, National Emission Standard for Hazardous Air Pollutants (NESHAP) 40 CFR 61, Occupational Safety and Health Administration (OSHA) 29 CFR Part 1926.1101, or other local, state or federal regulation.

Based on the date of construction (1980), it is likely that asbestos containing materials are present at the Property. Suspect asbestos-containing textured material, floor tile and mastic, drywall and joint compound were identified at the Property. These materials were observed to be in an overall undamaged condition at the time of the Property visit.

Currently, there are no regulations requiring the removal of ACM unless it will be disturbed during renovation, repairs, or demolition. The USEPA recommends that as long as the ACM does not pose an imminent health threat, the materials can be managed under an Operations and Maintenance (O&M) Plan. f3, inc. recommends that the Asbestos-Containing Materials O&M Plan be implemented at the Property.

Abbreviated ACM O&M program requirements

For Properties where ACM is found only in undamaged, nonfriable materials, such as floor tile, linoleum and/or floor tile mastic (adhesive), an abbreviated O&M program is acceptable. The minimum requirements for an abbreviated O&M program are:

- The Borrower must ensure that all maintenance personnel and all contractors performing work on the Property are informed that any flooring materials are assumed to contain asbestos and must instruct them never to scrape, sand or otherwise disturb the flooring materials.
- If, through routine inspection, damaged flooring materials are discovered, the Borrower must have the material tested for asbestos content.
- If the Borrower is contemplating renovation, demolition or other activities that pose the risk of disturbing the flooring material, the Borrower must have the material tested for asbestos content before such work commences.
- If the test results determine that the flooring material contains ACM, the Borrower must ensure that appropriate measures are taken to prevent the release of asbestos fibers into the air and that any applicable laws and regulations are followed.

Based on the above information, f3, inc. recommends that an Asbestos Operations and Maintenance Plan be developed and implemented at the Property.
9.2 Lead-Based Paint

In accordance with the Scope of Services, f3, inc. has conducted a limited, visual evaluation to note the condition of painted surfaces at the property. Based on the (1980) date of construction, lead-based paint is not anticipated to be present. The objective of this visual survey was to note the presence and condition of various painted surfaces. In general, the painted surfaces appeared in good condition, as no chalking, peeling or flaking paint was observed.

Based upon the above information, LBP is not expected to be an environmental concern at this time. No further action is recommended.

9.3 Radon

The US EPA has prepared a map to assist National, State, and local organizations to target their resources and to implement radon-resistant building codes. The map divides the country into three Radon Zones; Zone 1 being those areas with the average predicted indoor radon concentration in residential dwellings exceeding the EPA Action limit of 4.0 picocuries per liter (pCi/L), Zone 2, where average predicted radon levels are between 2.0 and 4.0 pCi/L., and Zone 3, where average predicted radon levels are less than 2.0 pCi/L. It is important to note that the EPA has found homes with elevated levels of radon in all three zones, and the EPA recommends site-specific testing in order to determine radon levels at a specific location. However, the map does give a valuable indication of the propensity of radon gas accumulation in structures. Review of the EPA Map of Radon Zones places the Property in Zone 3, where average predicted radon levels are less than 2.0 pCi/L.

In addition f3 contacted the state of Texas radon office (http://epa.gov/iaq/whereyoulive.html) for information regarding state licensing, certification and testing requirements. The state of Texas requires all persons performing radon testing be licensed and test in accordance with state guidelines as follows:

If site specific radon levels at the Property are desired f3 inc recommends conducting the test in accordance with The American Association of Radon Scientists and Technologists (AARST) recently released American National Standard (ANS), MAMF-2010, Protocols for Conducting Radon and Radon Decay Measurements in Multifamily Buildings.

If conducted under the MAMF-2010 guidelines, 100% of ground floor units and 10% of all upper floor units in all buildings at the Property are required to be tested.

EDR collected radon information on Dallas County as a whole and for the Property's zip code. According the data collected by EDR for Dallas County, average radon levels for first floor living areas are 1.2 pCi/L. EDRs report also indicated that roughly 96.8 percent of homes in Dallas County have a radon level less than 4 pCi/L.

9.4 Lead in Drinking Water

The Property is connected to the city water supply provided by the City of Richardson. According to the 2014 Annual Drinking Water Quality Report, the drinking water supplied to the site is within state and federal standards, including lead and copper. Water sampling was not conducted at the site to verify water quality.

9.5 Flood Zone and Wetlands

No evidence of wetland areas were observed on the Property during the site visit. Review of the USGS 7.5 minute series topographical quadrangle map of Garland, Texas did not reveal the presence of wetlands in the vicinity of the Property. The Property is developed with buildings, paved drive areas, walkways and landscaping. Therefore, wetlands are not considered to be an environmental concern to the Property.

A review of FEMA flood zone map 48113C0205K, dated July 7, 2014 indicates the Property buildings are located in unshaded Zone X, designated as an area outside the 0.2 percent annual chance flood plain.

9.6 Microbial Contamination (Mold)

As part of this assessment, f3, inc. surveyed the Property for evidence of moisture intrusion and mold growth (noting our limitations in Section 3.4). Interviews with management and maintenance staff revealed no current or past water infiltration issues at the Property and no tenant related complaints in regards to mold or water intrusion. During the site inspection no mold growth was observed at the interiors of the Property building(s).

9.7 Client-Specific Items

No client-specific items were requested for this assessment.
Appendix A:

Figures
Appendix B:
Photographs
View of monument sign.

View of Property facing Rockingham Lane.

View of single-family houses to the east.

View of church located to the south.
View of drainage channel and vacant land to the south.

View of handicap parking and leasing office (background).

View of apartments to the west.

View of concrete driveway and parking areas.
View of landscaping and concrete sidewalks.

View of covered breezeway.

View of exterior building finishes.

View of typical apartment entries.
Typical rear wall of an apartment building including pad-mounted condensing units.

View along east Property boundary facing south.

View along north Property boundary facing east.

View along east Property boundary facing south.

Typical pitched roofing.
View of leasing office entrance.

View of common laundry facing in the leasing office building.

View of trash dumpster emptied by the City of Richardson.

View of maintenance shop storage.
View of typical pad-mounted transformers.

Typical electric water heater installed in an interior closet.

Typical kitchen finishes and appliances.

Typical kitchen finishes and appliances.
Typical bathroom lavatory.

Typical handicapped accessible shower stall.

Typical bathroom finishes and fixtures.

Typical bedroom finishes.
APPENDIX N

Camelot Shopping Center VCP Regulatory Case File
Texas Natural Resource Conservation Commission
INTEROFFICE MEMORANDUM

To: Tosan Erwuyao, Accountant
 Financial Reporting Section, MC-181
 Financial Administration Division

 Kathy Frew, Accountant
 Revenues Section, MC-214
 Financial Administration Division

Thru: Charles Epperson, Section Manager
 Voluntary Cleanup Section
 Remediation Division

 Pat Fontenot, Unit Manager
 Voluntary Cleanup Section
 Remediation Division

From: Phyllis Primrose, Project Manager
 Voluntary Cleanup Section
 Remediation Division

Subject: Closing of Voluntary Cleanup Program (VCP) Program Cost Account (PCA)
 No. 33158, Camelot Shopping Center, VCP No. 1158

The applicant for the above referenced VCP project has completed all technical and administrative requirements; therefore, please close PCA No. 33158 effective the date of this memo. The last account charge was during the week ending January 26, 2001. Travel was not charged to the account.

If this account has a credit balance, please indicate a $0.00 balance due on the last invoice. If you have any questions, please call me at extension 0730.
January 23, 2001

Mr. Norman J. Hoppenstein
Hoppenstein Properties, Inc.
P.O. Box 796023
Dallas, TX 75379-6023

Re: Proof of Filing Certificate of Completion (COC) for Camelot Shopping Center, 580 West Arapaho Road, Richardson (Dallas County); Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Hoppenstein:

The Texas Natural Resource Conservation Commission (TNRCC) has received the required proof of filing the VCP COC which was necessary to complete the remaining closure requirements for this site. No further action for this site is required and all obligations under the VCP have been met. The TNRCC records for this site will be maintained at the Central Records office of the TNRCC in Austin, Texas.

Please be aware that there may be outstanding charges reflecting TNRCC oversight activities that occurred prior to the date of this letter that may still be forthcoming. If you have any questions please contact me at 512/239-0730.

Sincerely,

Phyllis Primrose, Project Manager
Voluntary Cleanup Section
Remediation Division

P.O. Box 13067
Austin, Texas 78711-3067
512/239-1009
Internet address: www.tnrc.state.tx.us

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

VOLUNTARY CLEANUP PROGRAM
FINAL CERTIFICATE OF COMPLETION

As provided for in §361.609, Subchapter S, Solid Waste Disposal Act (SWDA), Texas Health and Safety Code:

1. JACQUELINE S. HARDER, P.E., DIRECTOR OF THE REMEDIATION DIVISION, TEXAS NATURAL RESOURCE CONSERVATION COMMISSION, CERTIFIES UNDER §361.609, SWDA, TEXAS HEALTH AND SAFETY CODE, THAT NECESSARY RESPONSE ACTIONS HAVE BEEN COMPLETED FOR VCP NO. 1158 AS OF OCTOBER 29, 2000 FOR THE TRACT(S) OF LAND DESCRIBED IN EXHIBIT "A", BASED ON THE AFFIDAVIT OF COMPLETION OF RESPONSE ACTION EXHIBIT "B" AND WHICH ARE FURTHER DESCRIBED IN THE APPROVED FINAL REPORT FOR THE SITE AND DOES NOT REQUIRE MAINTENANCE OF ENGINEERING CONTROLS, REMEDIATION SYSTEMS, POST-CLOSURE CARE, OR PERMANENT INSTITUTIONAL CONTROLS. AN APPLICANT WHO ON THE DATE OF APPLICATION SUBMITTED WAS NOT A RESPONSIBLE PARTY UNDER §361.271 OR §361.271(e), SWDA AND ALL PERSONS WHO WERE RESPONSIBLE PARTIES UNDER §361.271 OR §361.271(e), SWDA, E.G., FUTURE OWNERS, FUTURE LESSEES, FUTURE OPERATORS AND LENDERS ON THE DATE OF ISSUANCE OF THIS CERTIFICATE ARE QUALIFIED TO OBTAIN THE PROTECTION FROM LIABILITY PROVIDED BY §361.610, SUBCHAPTER S, SWDA.

EXECUTED this 27th day of November, 2000

JACQUELINE S. HARDER, P.E., Director
Remediation Division

STATE OF TEXAS
TRAVIS COUNTY

BEFORE ME, on this the 27th day of November, 2000 personally and by power of attorney, appeared Jacqueline S. Harder, P.E., Director, Remediation Division, of the Texas Natural Resource Conservation Commission, known to me to be the person and agent of said division whose name is subscribed to the foregoing instrument, and she acknowledged to me that she executed the same for the purposes and in the capacity therein expressed.

GIVEN UNDER MY HAND AND SEAL OF OFFICE, this the 27th day of November, 2000.

JANICE M. SPAGNOL
Notary Public in and for the State of Texas

20010901639024123900200023302513
EXHIBIT "B"
TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
VOLUNTARY CLEANUP PROGRAM
AFFIDAVIT OF COMPLETION OF RESPONSE ACTION

On October 26, 2000, Happenwood Properties, Inc. (Applicant) has completed response actions, if necessary, pursuant to Chapter 361, Subchapter S, SWDA, at the tract of land described in Exhibit "A" to this certificate that pertains to Camelot Shopping Center (Site), VCP No. 1158 located at 580 West Arapaho Road in Richardson (Dallas County) Texas. The Site was owned by Camelot Associates at the time the application to participate in the Voluntary Cleanup Program was filed. The Applicant has submitted and received approval from the Texas Natural Resource Conservation Commission Voluntary Cleanup Section on all plans and reports required by the Voluntary Cleanup Agreement. The plans and reports were prepared using a prudent degree of inquiry of the Site consistent with accepted industry standards to identify all hazardous substances, waste and contaminated media of regulatory concern. The response actions for the Site have achieved response action levels acceptable for industrial land use as determined by the standards of the TNRCC. The response action eliminated substantial present or future risk to public health and safety and to the environment from releases and threatened releases of hazardous substances and/or contaminants at or from the Site. The Applicant has not acquired this certificate of completion by fraud, misrepresentation, or knowing failure to disclose material information. Further information concerning the response action at the Site may be found in the final report at the central office of the TNRCC under VCP No. 1158. Happenwood Properties, Inc. is the current owner of the Site.

The preceding is true and correct to the best of my knowledge and belief

Applicant: Happenwood Properties, Inc.

By: [Signature]

Print Name: [Signature]

STATE OF TEXAS
COUNTY OF COLLIN

This instrument was acknowledged before me on October 24, 2000, by Norman Happenstein, Notary Public in and for the State of Texas.

STATE OF TEXAS
COUNTY OF COLLIN

This instrument was acknowledged before me on October 24, 2000, by William S. Happenstein, Notary Public in and for the State of Texas.

EXHIBIT "C"
TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
VOLUNTARY CLEANUP PROGRAM
NOTICE OF CHEMICAL CONCENTRATIONS IN UNSALUBRIous GROUNDWATER WHICH EXCEED BACKGROUND LEVELS

STATE OF TEXAS
COUNTY OF COLLIN

This notice is filed with respect to the Camelot Shopping Center, 580 West Arapaho Road, Richardson, Dallas County, TX, VCP No. 1158 (Site) described in Exhibit "A".

 Portions of the shallow soils and perched groundwater at the site contain certain identified chemical constituents as indicated by reports on file at the Texas Natural Resource Conservation Commission (TNRCC). The Site currently meets the Risk Reduction Standard No. 3 closure criteria in accordance with 39 Texas Administrative Code §335.561 for industrial land use based on the evaluation of all current or reasonably anticipated future potential exposure pathways. In addition, it has been documented that the perched groundwater beneath the Site is not a current or future potential source of drinking water and will not be used as a source of drinking water. A review of all information provided indicates that the constituent concentrations are identified at detectable levels but pose no significant present or future risk to human health or the environment. As stated in the Certificate of Completion, the Site does not require maintenance of engineering controls, remediation systems, post closure care, permanent institutional controls or non-permanent institutional controls. For additional information contact:

TNRCC
Voluntary Cleanup Section
MC 221
P.O. Box 13087
Austin, Texas 78711-3087
(512) 239-2920

TNRCC Program and Identifier No.: Voluntary Cleanup Program, VCP No. 1158

As of the date of this Notice, the record owner of fee title to the Site is

[Signature]

Executed this 24th day of October, 2000

Applicant: Happenwood Properties, Inc.

By: [Signature]

Print Name: [Signature]

STATE OF TEXAS
COUNTY OF COLLIN

This instrument was acknowledged before me on October 24, 2000, by William S. Happenstein, Notary Public in and for the State of Texas.
From: Joseph Bell
To: FO WM1PO.PPRIMROS
Date: 11/13/00 1:45pm
Subject: VCP No. 1158

Phylis,

I received a call from Norman Hopenstein (sp?) regarding VCP No. 1158 and filing of Exhibit C (notice of Contamination in an unusable ground water zone). His question was on whether Exhibit C needed to filed to the deed since it was not mentioned in the Certificate of Completion. I told him it was necessary to file Exhibit C in order to satisfy Risk Reduction Rule criteria if for no other purpose.
November 10, 2000

Mr. Norman J. Hoppenstein
Hoppenstein Properties, Inc.
P.O. Box 796023
Dallas, TX 75379-6023

Re: Certificate of Completion (COC) for Camelot Shopping Center, 580 West Arapaho Road, Richardson (Dallas) County; Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Hoppenstein:

The Texas Natural Resource Conservation Commission (TNRCC) has reviewed the reports entitled Site Investigation Report (SIR) dated March 2000 and Supplemental Report to SIR dated July 2000 as well as other requested information. The information provided in the reports demonstrate attainment of Risk Reduction Standard (RRS) No. 3 in accordance with 30 Texas Administrative Code (TAC) §335.561. Therefore, the TNRCC agrees that no further action is necessary and issues the enclosed COC.

Response actions attaining RRS No. 3 must record such facts in the real property records of the county in which the site is located in accordance with 30 TAC Chapter 335, Subchapter S (i.e., Risk Reduction Rules). By filing the COC in the real property records pursuant to 30 TAC §335.9, VCP applicants satisfy this requirement.

Please submit proof of filing the COC in the real property records no later than 60 days from the date of this letter to my attention at the TNRCC, Voluntary Cleanup Section, mail code MC 221, at the letterhead address. You may contact me with any questions or comments you have at (512) 239-0730.

Sincerely,

Phylis Primrose, Project Manager
Voluntary Cleanup Section
Remediation Division

Enclosures
EXHIBIT "B"
TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
VOLUNTARY CLEANUP PROGRAM
AFFIDAVIT OF COMPLETION OF RESPONSE ACTION

 Applicant: Has completed response actions, if necessary, pursuant to Chapter 361, Subchapter S, SWDA, as the tract of land described in Exhibit "A" to this certificate that pertains to Camelot Shopping Center (Site), VCP No. 1158 located at 580 West Arapaho Road in Richardson (Dallas County) Texas. The Site was owned by Camelot Associates at the time the application to participate in the Voluntary Cleanup Program was filed. The Applicant has submitted and received approval from the Texas Natural Resource Conservation Commission Voluntary Cleanup Section on all plans and reports required by the Voluntary Cleanup Agreement. The plans and reports were prepared using a prudent degree of inquiry of the Site consistent with accepted industry standards to identify all hazardous substances, waste and contaminated media of regulatory concern. The response actions for the Site have achieved response action levels acceptable for industrial land use as determined by the standards of the TNRCC. The response action eliminated substantial present or future risk to public health and safety and to the environment from releases and threatened releases of hazardous substances and/or contaminants at or from the Site. The Applicant has not acquired this certificate of completion by fraud, misrepresentation, or knowing failure to disclose material information. Further information concerning the response actions at this Site may be found in the final report at the central office of the TNRCC under VCP No. 1158.

The preceding is true and correct to the best of my knowledge and belief.

Applicant:
By: ____________________________
Print Name: ____________________________

STATE OF: ______
COUNTY OF: ______

This instrument was acknowledged before me on _______ by ____________________________.

Notary Public in and for the State of ______.

KATHY L. STEPHENS
11th COMMISSIONER EXPIRES: April 22, 2003

EXHIBIT "C"
TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
VOLUNTARY CLEANUP PROGRAM
NOTICE OF CHEMICAL CONCENTRATIONS IN UNUSEABLE GROUNDWATER WHICH EXCEED BACKGROUND LEVELS

STATE OF: ______
COUNTY OF: ______

This notice is filed with respect to the Camelot Shopping Center, 580 West Arapaho Road, Richardson, Dallas County, TX; VCP No. 1158 (Site) described in Exhibit "A".

Portions of the shallow soils and perched groundwater at the Site contain certain identified chemical constituents as indicated by reports on file at the Texas Natural Resource Conservation Commission (TNRCC). The Site currently meets the Risk Reduction Standard No. 3 closure criteria in accordance with 30 Texas Administrative Code §335.561 for industrial land use based on the evaluation of all current or reasonably anticipated future potential exposure pathways. In addition, it has been documented that the perched groundwater beneath the Site is not a current or future potential source of drinking water and will not be used as a source of drinking water. A review of all information provided indicates that the constituent concentrations are identified at detectable levels but pose no significant present or future risk to human health or the environment. As stated in the Certificate of Completion, the Site does not require maintenance of engineering controls, remediation systems, post closure care, permanent institutional controls or non-permanent institutional controls. For additional information contact:

TNRCC Voluntary Cleanup Section
MC 227
P.O. Box 13087
Austintex, Texas 78711-3087
(512) 236-2920

TNRCC Program and Identifier No.: Voluntary Cleanup Program, VCP No. 1158

As of the date of this Notice, the record owner of fee title to the Site is ________________________________.

Executed this ______ day of ______, 2000.

Applicant:
By: ____________________________
Print Name: ____________________________

STATE OF: ______
COUNTY OF: ______

This instrument was acknowledged before me on _______ by ____________________________.

Notary Public in and for the State of ______.

KATHY L. STEPHENS
11th COMMISSIONER EXPIRES: April 22, 2003
Texas Natural Resource Conservation Commission
INTEROFFICE MEMORANDUM

To: Jacqueline S. Hardee, P.E., Director
 Remediation Division
Thru: Charles Eppersten, Section Manager
 Voluntary Cleanup Section

 Pat Fontenot, Unit Manager
 Voluntary Cleanup Section

From: Phyllis Primrose, Project Manager
 Voluntary Cleanup Section
Subject: Voluntary Cleanup Certificate of Completion (COC), Camelot Shopping Center, 580 West Arapaho Road, Richardson (Dallas County) TX; VCP No. 1158

The Camelot Shopping Center site is a dry cleaning facility in which the applicant, Hoppenstein Properties, Inc. has successfully completed voluntary cleanup activities under the terms of a voluntary cleanup agreement in accordance with §361.660 of the Solid Waste Disposal Act (SWDA), Texas Health and Safety Code. The chemical of concern is tetrachloroethylene (PCE) in groundwater. PCE was detected in the groundwater samples collected from one monitor well (MW-3). The applicant demonstrated that the first water-bearing unit at the site has a low yield determined by direct measurement of three monitor wells. The maximum PCE concentration detected to date (41.2 ppb) is less than the adjusted groundwater Media Specific Concentration. Remediation activities were not required. The applicant will file a “Notice of Chemical Concentrations in Unsuitable Groundwater” in the property records. The applicant has attained the standards for Risk Reduction Standard No. 3 (Remediation with Controls), in accordance with 30 Texas Administrative Code §335.561. Therefore, the VCP is prepared to issue a Certificate of Completion (COC) for the above referenced site.

The COC is attached for your signature. Please contact me with any questions or comments regarding this site at extension 0730.

Attachments

Texas NATURAL RESOURCE CONSERVATION COMMISSION

October 2, 2000

Mr. Norman J. Hoppenstein
Hoppenstein Properties, Inc.
P.O. Box 796623
Dallas, TX 75239-6623

Re: Camelot Shopping Center, 580 West Arapaho Road, Richardson (Dallas County), TX; Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Hoppenstein:

The Texas Natural Resource Conservation Commission (TNRCC) has reviewed the reports entitled Site Investigation Report (SIR) dated March 2000 and Supplemental Report to SIR dated July 2000 as well as other requested information. Based on this review, the TNRCC has determined that the reports demonstrate that the response actions conducted at the site have attained Risk Reduction Standard No. 3 (Remediation with Controls), in accordance with 30 Texas Administrative Code §335.561. Therefore, the VCP is prepared to issue a Certificate of Completion (COC) for the above referenced site.

Enclosed for your signature is an Affidavit of Completion (Exhibit "B") and an Insolutional Control (Exhibit "C") which will become attachments to the COC. Exhibit "B" is a statement of your diligence in performing the necessary corrective action at the site. Exhibit "C" is a legal notice of chemical concentrations in groundwater which exceed background concentrations.

We appreciate the opportunity for the Texas VCP to help you receive the COC. To help us serve you and others better in the future and to determine the value of the VCP, we are requesting your assistance to answer and return the Texas VCP/Brownfields Survey in the enclosed envelope. By completing this survey, you are providing information which is vital in helping us reach our goal of providing the best possible service by understanding your issues and focusing on solutions which will continually improve the VCP. We would also appreciate any additional comments or observations about the VCP beyond those questions asked on the survey.

Please return the original executed exhibits and the Texas VCP/Brownfields Survey with the enclosed envelope. The requested information should be sent to my attention at the TNRCC, Voluntary Cleanup Section, mail code MC 221, at the letterhead address at your earliest convenience, but not later than 30 days from your receipt of this letter. If an adequate response cannot be prepared within this time frame, please contact me to discuss an alternative schedule.

P.O. Box 13087 • Austin, Texas 78711-2687 • 512/239-1099 • Internet address: www.tnrc.state.tx.us
Mr. Norman J. Hoppenstein
Page 2
October 2, 2000

When I have received the executed affidavit and the VCP has received the Brownfields Survey, I will prepare the COC with attached exhibits and mail it to you. At that time, you will file the COC in the Dallas County deed records (with written approval from the current property owner - Camelot Associates) and return proof of the filing to me. You may contact me with any questions or comments at (512) 239-0730.

Sincerely,

[Signature]

Phyllis Primrose, Project Manager
Voluntary Cleanup Section
Remediation Division
PJP/ts

Enclosures

cc Mr. Melvin Green, Chiang, Patel, & Yerby, Inc., Fort Worth, TX
Mr. Charles C. Yang, Yang Realty, Inc., Dallas, TX
October 2, 2000

Mr. Norman J. Hoppenstein
Hoppenstein Properties, Inc.
P.O. Box 796023
Dallas, TX 75379-6023

Re: Camelot Shopping Center, 580 West Arapaho Road, Richardson (Dallas County), TX; Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Hoppenstein:

The Texas Natural Resource Conservation Commission (TNRCC) has reviewed the reports entitled Site Investigation Report (SIR) dated March 2000 and Supplemental Report to SIR dated July 2000 as well as other requested information. Based on this review, the TNRCC has determined that the reports demonstrate that the response actions conducted at the site have attained Risk Reduction Standard No. 3 (Remediation with Controls), in accordance with 30 Texas Administrative Code §335.561. Therefore, the VCP is prepared to issue a Certificate of Completion (COC) for the above referenced site.

Enclosed for your signature is an Affidavit of Completion (Exhibit "B") and an Institutional Control (Exhibit "C") which will become attachments to the COC. Exhibit "B" is a statement of the your diligence in performing the necessary corrective action at the site. Exhibit "C" is a legal notice of chemical concentrations in groundwater which exceed background concentrations.

We appreciate the opportunity for the Texas VCP to help you receive the COC. To help us serve you and others better in the future and to determine the value of the VCP, we are requesting your assistance to answer and return the Texas VCP/Brownfields Survey in the enclosed envelope. By completing this survey, you are providing information which is vital in helping us reach our goal of providing the best possible service by understanding your issues and focusing on solutions which will continually improve the VCP. We would also appreciate any additional comments or observations about the VCP beyond those questions asked on the survey.

Please return the original executed exhibits and the Texas VCP/Brownfields Survey with the enclosed envelope. The requested information should be sent to my attention at the TNRCC; Voluntary Cleanup Section, mail code MC 221, at the letterhead address at your earliest convenience, but not later than 30 days from your receipt of this letter. If an adequate response cannot be prepared within this time frame, please contact me to discuss an alternative schedule.

P.O. Box 13087 • Austin, Texas 78711-13087 • 512/239-1000 • Internet address: www.tnrcc.state.tx.us

Sincerely,

[Signature]
Phyllis Primeau, Project Manager
Voluntary Cleanup Section
Remediation Division

Enclosures

cc: Mr. Melvin Green, Chiang, Patel, & Yerby, Inc., Fort Worth, TX
Mr. Charles C. Yang, Yang Realty, Inc., Dallas, TX

October 2, 2000

When I have received the executed affidavit and the VCP has received the Brownfields Survey, I will prepare the COC with attached exhibits and mail it to you. At that time, you will file the COC in the Dallas County deed records (with written approval from the current property owner - Camelot Associates) and return proof of the filing to me. You may contact me with any questions or comments at (312) 239-0730.
Re: Camelot Shopping Center, 580 West Arapaho Road, Richardson (Dallas County), TX; Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Hoppenstein,

The Texas Natural Resource Conservation Commission (TNRCC) has reviewed the reports entitled Site Investigation Report (SIR) dated March 2000 and Supplemental Report to SIR dated July 2000 as well as other requested information. Based on this review, the TNRCC has determined that the reports demonstrate that the response actions conducted at the site have attained Risk Reduction Standard No. 3 (Remediation with Controls), in accordance with 30 Texas Administrative Code §335.561. Therefore, the VCP is prepared to issue a Certificate of Completion (COC) for the above referenced site.

Enclosed for your signature is an Affidavit of Completion (Exhibit "B") and an Institutional Control (Exhibit "C") which will become attachments to the COC. Exhibit "B" is a statement of the your diligence in performing the necessary corrective action at the site. Exhibit "C" is a legal notice of chemical concentrations in groundwater which exceed background concentrations.

We appreciate the opportunity for the Texas VCP to help you receive the COC. To help us serve you and others better in the future and to determine the value of the VCP, we are requesting your assistance to answer and return the Texas VCP Brownfields Survey in the enclosed envelope. By completing this survey, you are providing information which is vital in helping us reach our goal of providing the best possible service by understanding your issues and focusing on solutions which will continually improve the VCP. We would also appreciate any additional comments or observations about the VCP beyond those questions asked on the survey.

Please return the original executed exhibits and the Texas VCP Brownfields Survey with the enclosed envelope. The requested information should be sent to my attention at the TNRCC, Voluntary Cleanup Section, mail code MC 221, at the letterhead address at your earliest convenience, but not later than 30 days from your receipt of this letter. If an adequate response cannot be prepared within this time frame, please contact me to discuss an alternative schedule.

Sincerely,

Phyllis Primrose, Project Manager
Voluntary Cleanup Section
Remediation Division

Enclosures

cc Mr. Melvin Green, Chiang, Patel, & Yerby, Inc., Fort Worth, TX
Mr. Charles C. Yang, Yang Realty, Inc., Dallas, TX
July 24, 2000

Ms. Phyllis Primrose
Texas Natural Resource Conservation Commission
P. O. Box 11087
MC-221
Austin, TX 78711-3087

RE: Camelot Shopping Center, 580 W. Arapaho Road, Richardson, Dallas County, Texas
Voluntary Cleanup Program (VCP) No. 1158
Supplemental Data to Site Investigation Report
CP&Y Project No.: CYP0005

Dear Ms. Primrose:

In accordance with your comments dated May 4, 2000, and your follow up letter and comments dated June 15, 2000, Chiang, Patel & Yerby, Inc. (CP&Y), has conducted additional field investigations and laboratory testing for the Camelot Shopping Center. In brief, the following activities were performed on June 19 through June 22, 2000:

- Grid sampling and testing (nine borings) across the 6.4-acre site on 150' spacing.
- Drilling, sampling, and testing at floor drains (two borings) inside the suite that housed the dry-cleaning facility, at vents (one boring) leading from the suite; and along sewer lines (two borings) coming from the suite.
- Recorded water levels in the seven monitoring wells, purged the wells, and sampled. Tested for VOCs and TPH. Tested one well that had PCE (Monitoring Well 3) for SVOCs.
- Purged all monitoring wells with a submersible pump until dry recording gallons that were pumped.

Results of the June drilling, sampling, and testing are contained in the enclosed Supplemental Report to Site Investigation Report.

PRINCIPALS
W. Walter Chiang, P.E. • Peter H. Patel, P.E. • Philip S. Yerby, P.E. • Edward M. Motley, P.E. • Philip M. Armstrong, P.E.
S. Grant Cuba, P.E. • Michael S. Harper, P.E. • David S. Noshman, P.E. • John Epton, P.E.
Ms. Phyllis Primrose
July 24, 2000
Page Two

I trust the investigations comply with the TNRCC requirements. Please call me if you have questions.

Sincerely,

Melvin G. Green, R.G.
Project Manager

MGG/RG

Enclosure: Supplemental Report

cc: Norman Hoppenstein, Hoppenstein Properties, Inc.
 John Manger, WRC Inc.

Robert J. Huston, Chairman
R. B. "Ralph" Marquez, Commissioner
John M. Baker, Commissioner
Jeffrey A. Salas, Executive Director

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
Protecting Texas by Reducing and Preventing Pollution

June 15, 2000

Mr. Melvin Green
Chiang, Patel & Verby, Inc.
4100 Amon Carter Boulevard, Suite 104
Fort Worth, TX 76155

Re: Response to TNRCC Comments Regarding the Site Investigation Report (SIR) for Camelot Shopping Center, 580 West Arapaho Road, Dallas, Dallas County; Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Green:

In a letter dated 4 May 2000 (Comment Letter), the Texas Natural Resource Conservation Commission (TNRCC) provided comments to the SIR dated March 2000. A response to the TNRCC comments was provided in your letter dated 1 June 2000 (Response Letter). The status of the original TNRCC comments are enclosed. These modifications should be incorporated into the field activities scheduled to be performed the week of 19 June 2000. Should you need additional information, please call me at (512) 239-0730.

Sincerely,

Phyllis Primrose, Project Manager
Voluntary Cleanup Section
Remediation Division

P/J freight

Enclosures

cc: Mr. Norman J. Hoppenstein, Hoppenstein Properties, Inc., Dallas, TX
Enclosure
Camelot Shopping Center
SIR - March 2000
VCP No. 1158

General Comments

1) The TNRCC requested that sampling between source areas be performed in accordance with the TNRCC Grid Sampling Guidance Document dated June 15, 1999. Figure 2 of the Response Letter includes a location map for the grid samples. The TNRCC concurs that the locations shown on Figure 2 meet the requirements of the Grid Sampling Guidance. As discussed with you on 14 June 2000, a sufficient number of samples have been collected from two of the grid locations. You may elect to eliminate samples C-2 and C-4 shown on the enclosed fax dated 14 June 2000.

2) The TNRCC requested that additional soil samples be collected along the sanitary sewer line, in the vicinity of the back door, adjacent to indoor and outdoor drains and the ground surface beneath roof vents where vapors/condensate may have been released. A hand-drawn map of the Response Letter shows the locations of two additional proposed samples. The Response Letter states that the samples will be collected from the “upper 6-inches of soil underlying the asphalt paving and base course material.” Soil samples should be collected from the ground surface to the top of groundwater or bedrock (which ever is less). Samples are not proposed along the sanitary sewer. Since the submittal of the Response Letter, a floor drain has been identified. The TNRCC requests that additional soil borings be installed immediately adjacent to the floor drain and the sanitary sewer (see enclosed TNRCC fax dated 14 June 2000). The samples should be collected immediately beneath the sanitary sewer line.

3) The TNRCC requested that a summary table be submitted for all soil and groundwater samples collected to date. Summary tables were submitted with the Response Letter. Sampling depths were not provided for HA-3 and HA-4. These tables should be corrected and updated with the new data.

4) The TNRCC informed you that Media Specific Concentrations may be adjusted based on low-yield only under Risk Reduction Standard No. 3. The Response Letter acknowledged this correction.

5) The TNRCC requested that the well yield be determined by direct measurement. The Response Letter states that direct measurement is not required under the Texas Risk Reduction Program Document, Volume II, Appendix VIII Section VIII.6, Procedures for Determination of Groundwater Resource Classification. The VCP allows the use of Appendix VIII for water-bearing units that are soils (clay, gravel, sand, and/or silt). The VCP does not allow the use of Appendix VIII for the Austin Chalk. This includes the gradational contact between the overlying soils and the unweathered limestone. If you wish to pursue a low-yield demonstration, the TNRCC will re-evaluate the information submitted to date to determine available options for this demonstration.

6) The TNRCC requested that the water levels be measured in and groundwater samples be collected from each of the seven on-site monitor wells. See Comment No. 7.

7) The TNRCC requested that soil and groundwater samples collected be analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and total petroleum hydrocarbons (TPH). The Response Letter states that samples will be collected from wells that recover “sufficiently in 24-hours.” The TNRCC requests that groundwater samples be collected from all monitor wells regardless of the recovery volume and/or time. If the volume is not sufficient to analyze for all of the constituents listed, you should prioritize the analyses for VOCs, TPH and then SVOCs.
June 14, 2000

Mr. Melvin Green
Chiang, Patel & Yerby, Inc.
4100 Amon Carter Boulevard, Suite 104
Fort Worth, TX 76155

Re: Response to TNRCC Comments Regarding the Site Investigation Report (SIR) for Camelot Shopping Center, 580 West Arapaho Road, Dallas, Dallas County: Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Green:

In a letter dated 4 May 2000 (Comment Letter), the Texas Natural Resource Conservation Commission (TNRCC) provided comments to the SIR, dated March 2000. A response to the TNRCC comments was provided in your letter dated 1 June 2000 (Response Letter). The status of the original TNRCC comments are enclosed. These modifications should be incorporated into the field activities scheduled to be performed the week of 19 June 2000. Should you need additional information, please call me at (512) 239-0730.

Sincerely,

Phyllis Primrose, Project Manager
Voluntary Cleanup Section
Remediation Division

PJPs

Enclosures

cc: Mr. Norman J. Hoppenstein, Hoppenstein Properties, Inc., Dallas, TX

Mr. Melvin Green
VCP No. 1158
14 June 2000

Enclosure

Camelot Shopping Center
SIR - March 2000
VCP No. 1158

General Comments

1) The TNRCC requested that sampling between source areas be performed in accordance with the TNRCC Grid Sampling Memo; dated June 15, 1999. Figure 2 of the response letter includes a location map for the grid samples. The TNRCC concurs that the locations shown on Figure 2 meet the requirements of the Grid Sampling Memo. As discussed with you on 14 June 2000, a sufficient number of samples have been collected from two of the grid locations. You may elect to eliminate samples C-2 and C-4 shown on the attached fax dated 14 June 2000.

2) The TNRCC requested that additional soil samples be collected along the sanitary sewer line in the vicinity of the back door, adjacent to indoor and outdoor drains, and the ground surface beneath roof vents where vapors condensate may have been released. A hand-drawn map of the Response Letter shows the locations of two additional proposed samples. The Response Letter states that the samples will be collected from the "upper 6-inches of soil underlying the asphalt paving and base course material." Soil samples should be collected from the ground surface to the top of groundwater or bedrock (which ever is less). Samples are not proposed along the sanitary sewer. Since the submittal of that Response Letter, a floor drain has been identified. The TNRCC requests that additional soil borings be installed immediately adjacent to the floor drain and the sanitary sewer (see attached TNRCC memo dated 14 June 2000). The samples should be collected immediately beneath the sanitary sewer line.

3) The TNRCC requested that a summary table be submitted for all soil and groundwater samples collected to date. Summary tables were submitted with the Response Letter. Sampling depths were not provided for HA-3 and HA-4. These tables should be corrected and updated with the new data.

4) The TNRCC informed you that Media Specific Concentrations (MSC) may be adjusted based on low-yield only under Risk Reduction Standard (RRS) No. 3. The Response Letter acknowledged this correction.

5) The TNRCC requested that you determine the yield be determined by direct measurement. The Response Letter states that direct measurement is not required under the Texas Risk Reduction Program Document, Volume II, Appendix VIII Section VIII.6, Procedures for Determination of Groundwater Resource Classification. The VCP allows the use of Appendix VIII for water-bearing units that are soils (clay, gravel, sand, and/or silt). The VCP does not allow the use of Appendix VIII for the Austin Chalk. This includes the...
gradational contact between the overlying soils and the unweathered limestone. If you wish to pursue a low-yield demonstration, please follow the methods described in the TNRCC Comment Letter. The TNRCC will be available to discuss. See Comment No. 6.

6) The TNRCC requested that the water levels be measured in and groundwater samples be collected from each of the seven on-site monitor wells. See Comment No. 7.

7) The TNRCC requested that soil and groundwater samples collected be analyzed for volatile organic compounds, semi-volatile organic compounds and total petroleum hydrocarbons (TPH). The Response Letter states that samples will be collected from wells that recover sufficiently in 24-hours. The TNRCC requests that groundwater samples be collected from all monitor wells regardless of the recovery volume and/or time. If the volume is not sufficient to analyze for all of the constituents listed, you should prioritize the analyses for VOCs, TPH, and then SVOCs.
TRANSMITTAL

DATE: June 15, 2000

TO: Name: Mel Green
Organization: Chiang, Patel & Yerby
FAX Number: (817) 354-4835

FROM: TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
Name: Phyllis Primrose
Division/Region: VCP
Telephone Number: (512) 239-0730
FAX Number: (512) 239-1212

Date: June 15, 2000

NUMBER OF PAGES (including this cover sheet): 4

TO:
Name: Mel Green
Organization: Chiang, Patel & Yerby
FAX Number: (817) 354-4835

FROM:
TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
Name: Phyllis Primrose
Division/Region: VCP
Telephone Number: (512) 239-0730
FAX Number: (512) 239-1212

NOTES:
Following is the TNRCC response to your letter dated 1 June 2000 regarding the Camelot Site, VCP No. 1158. Please incorporate these changes during the field activities scheduled for the week of June 19, 2000.
TO: Phyllis Primmer
FROM: Mel Green
Fax No: 512 239 1212
Fax No: (817) 354-4935
Company: TPHCS
Job Code: CYP 0005
Subject: VCP No 1158-Non PA14
New Date: 5/14/00
No. Pages (including Cover): 2

MESSAGE:
Phyllis:
In a previous telephone conversation you requested a sketch showing non-paved (exposed gravel) areas. I have shown those on the attached drawings. The rectangular areas are about 2' x 18'. The area south of bldg 200 is about 20' x 25'. Let me know if you need anything else.

Thanks,
Mel Green
DATE: June 14, 2000 NUMBER OF PAGES (including this cover sheet): 1

TO: Name Mel Green

Organization Chiang, Patel & Yerby

FAX Number (817) 354-4935

FROM: TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Name Phyllis Primrose

Division/Region VCP

Telephone Number (512) 239-0730

FAX Number (512) 239-1212

NOTES:

The purpose of this fax is to respond to your fax, dated 13 June 2000, regarding the requirement to sample adjacent to the floor drain located at the Carmelot Site, VCP No. 1158. According to your fax, boring HA-2 is located 7 feet from the drain. The TNRCC requests that a boring be installed immediately adjacent to the floor drain. Soil samples should be collected from the top of ground surface to the top of groundwater or bedrock whichever is less.

With respect to investigating the sanitary sewer, the map you provided shows one sample HA-3 along the sanitary sewer. The TNRCC requires that a sufficient number of samples be collected along the sanitary sewer in order to confirm the presence/absence of a release from the sanitary sewer. A good rule of thumb is to use the length of the piping (typically 8-foot sections) to determine a sufficient number of samples. The samples should be collected at connection points.

Please contact me if you have any questions.

MESSAGE:

Phyllis:

In a previous telephone conversation you requested a sketch showing non-paved (grass covered) areas. I have shown those on the attached drawings. The rectangular areas are about 2' x 18'. The area south of 8/8/2000 is about 20' x 25'. Let me know if you need anything else.

Thanks,

Mel Green
TRANSMITTAL

DATE: June 14, 2000

NUMBER OF PAGES (including this cover sheet): 1

TO: Name
 Organization: Chiang, Patel & Yerby
 FAX Number: (817) 354-4935

FROM: TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
 Name: Phyllis Primrose
 Division/Region: VCP
 Telephone Number: (512) 239-0730
 FAX Number: (512) 239-1212

NOTES:
The purpose of this fax is to respond to your fax, dated 13 June 2000, regarding the requirement to sample adjacent to the floor drain located at the Camelot Site. VCP No. 1158. According to your fax, boring HA 2 is located 7 feet from the drain. The TNRCC requests that a boring be installed immediately adjacent to the floor drain. Soil samples should be collected from the top of ground surface to the top of groundwater or bedrock whichever is less.

With respect to investigating the sanitary sewer, the map you provided shows one sample HA 3 along the sanitary sewer. The TNRCC requires that a sufficient number of samples be collected along the sanitary sewer in order to confirm the presence/absence of a release from the sanitary sewer. A good rule of thumb is to use the length of the piping (typically 8-foot sections) to determine a sufficient sample.
The purpose of this fax is to respond to your fax, dated 13 June 2000, regarding the requirement to sample adjacent to the floor drain located at the Camelot Site, VCP No. 1158. According to your fax, boring HA-2 is located 7 feet from the drain. The TNRCC requests that a boring be installed immediately adjacent to the floor drain. Soil samples should be collected from the top of ground surface to the top of groundwater or bedrock whichever is less.

With respect to investigating the sanitary sewer, the map you provided shows one sample HA-3 along the sanitary sewer. The TNRCC requires that a sufficient number of samples be collected along the sanitary sewer in order to confirm the presence / absence of a release from the sanitary sewer. A good rule of thumb is to use the length of the piping (typically 8-foot sections) to determine a sufficient number of samples. The samples should be collected at connection points.

Please contact me if you have any questions.
Ms. Phyllis Primrose
Texas Natural Resource Conservation Commission
P.O. Box 13087
Mail Code MC-221
Austin, TX 78711-3087

RE: Camelot Shopping Center, 380 West Arapaho Road,
Richardson, Dallas County, Texas

TNRCC Comments; Voluntary Cleanup Program (VCP) No. 1138
Site Investigation Report
CP&Y Project No.: CYP0005

Dear Ms Primrose:

The following is in response to your letter and comments dated May 4, 2000, regarding the Site Investigation Report for the Camelot Shopping Center.

Comment 1: The Site is 6.5 acres. The sampling activities performed to date have been focused around the location of a former dry-cleaning facility. In order for a certificate of completion to be issued for the entire site, the VCP requires that soil samples be collected from the entire site. The samples should be collected from the center of each grid.

Response: A 150' x 150' grid has been laid out across the 6.5-acre site and shallow borings sited in the center of each grid. Soil samples will be taken in the upper 6 inches of soil underlying the asphalt paving and base course material. Samples will be tested in accordance with the VCP guidance for sampling between source areas furnished with your comments. A proposed boring layout is enclosed.

Comment 2: Two soil samples were collected beneath the floor of the dry-cleaning establishment and one soil sample was collected beneath the sanitary sewer. TNRCC requests that additional soil samples be collected along the sanitary sewer line in the vicinity of the back door, adjacent to indoor and outdoor drains, and ground surface beneath roof vents where vapors/condensate may have been released. Locations of these potential source areas should be shown on a map along with the sample locations.
Response: A sketch showing locations of the back door, sanitary sewer line, and waste leading from the suite that housed the cleaning establishment is provided along with proposed sampling locations. We propose sampling outside the northermost back door and beneath the vent in the wall. Monitoring well MW-1 is located near the south door. No outdoor nor indoor drains were noted during the drilling of the two borings inside the suite. However, a new scan will be made and if a drain is discovered, samples will be taken. A sample will be taken in the top 6 inches of the materials beneath the asphalt and base course materials and tested for TPH and VOCs. If above laboratory detection levels are discovered, the samples will be tested for SVOCs.

Comment 3: Summary tables were not provided with the SIR. Please provide summary tables for all soil and groundwater samples collected to date. The tables should include the sample identification, collection date, depth, and analytical results for all analytes detected. The tables should also include the results of any samples collected for quality control/quality assurance.

Response: Summary tables have been prepared and are provided herein. Please substitute the following pages in the SIR:

Table of Contents showing addition of paragraph 3.6, Laboratory Results, and Table 3-3 and Table 3-4.

Add pages 3-4 and 3-5 to Section 3, Scope of Assessment Activities.

Substitute new page 5-1 for old page 5-1

Comment 4: The SIR adjusts the Media Specific Concentrations (MSCs) based on low-yield and states the MSCs may be adjusted by a factor of 100 under Risk Reduction Standard (RRS) No. 2. The MSCs may be adjusted based on low yield only under RRS No. 3.

Response: Correction has been made. Please substitute new page ES-2 into the SIR.

Comment 5: The SIR estimates the well yield using Method 1 of the Texas Risk Reduction Program Document, Volume 11, Appendix VIII, Section VIII.6. Procedures for Determination of Groundwater Resource Classification. Method 1 is not appropriate for the Austin Chalk Formation. For weathered limestone, the TNRCC requires that the wells should be tested that are spatially separated across the site. The monitor wells should be located and constructed such that the maximum yield is obtained. The test should be performed by operating a low flow pump at a rate of 0.1 gallons per minute. If a continuous flow is demonstrated, the test should be operated a minimum of six hours and extrapolated to a 24-hour yield. If the well purges dry, the test should be repeated after the water level has recovered to 90% of the original water level. If the well again purges dry, well yield is less than 150 gallons per day.

Response: Seven (7) monitoring wells were drilled across the site to determine the geology and groundwater hydrology. Only two of the borings encountered water at the time of drilling. Both MW-3 and MW-5 encountered a thin water-bearing zone within a clayey material that could be described as either overburden or highly weathered chalk. The contact between the overburden and weathered chalk is very gradual. Picking the tops of the primary is generally a call of the geologist logging the core. Under either circumstance, the cores of the material showed no jointing or bedding or any other features that would indicate the materials had secondary permeability characteristic of rock. It is believed that the only way this material could be absolutely determined to be Austin Chalk Formation would be to have it examined for microscopic fossil content. Atterberg limits on the materials in MW-5 between 7 and 9 feet classified the clays as CH under the Unified Soil Classification System.

Appendix VIII, Procedures for Determination of Groundwater Resource Classification, does not appear to exclude rock in this determination. Paragraph VIII.2 states that "the term 'groundwater' applies to all water within a subsurface geologic formation below the depth of fluid saturation of the rock or soil pore space." Paragraph VIII.3 discusses permeable strata, "such as sands, silts, or fractured rock" and "depth of occurrence, thickness, and the soil or rock type of affected water-bearing strata." I have not found anything in Paragraph VIII.6 that specifically excludes using this method in rock weathered to a clay classification.

Appendix VIII states that "actual well yield tests conducted per Method 2 should be rerun for those units for which Method 1 results are 5% to 20% of the high yield boundary (i.e., 100 gpm) or the low boundary (i.e., 150 gpd)." In our calculations a very liberal interpretation of the aquifer parameters was used. While the saturated thickness was probably no more than one (1) foot, a saturated thickness of 5 feet was used. The clays have an estimated hydraulic conductivity of 1 x 10^-6. However, using 1 x 10^-4, or two orders of magnitude more than a reasonable figure, the maximum sustainable yield would still be less than 20 gpd.

We respectfully request reconsideration of the requirement to conduct pump tests in wells across the area.
Comment 6: TNRCC requests that the water levels in each of the seven on-site monitor wells be recorded. If water is present, a groundwater sample should be collected and analyzed for the parameters listed under Comment No. 7.

Response: Water levels will be measured in each of the seven (7) monitor wells. A quantity of water equal to three casing volumes will be purged from each well. Samples will be taken in those wells that recover sufficiently in 24 hours to allow sampling. It is recommended that testing for semi-volatile organic compounds (SVOCs) be conducted in only MW-3, the only well that has had a hit in all previous sampling rounds. Water samples from all other wells will be tested for VOCs and TPHs using TNRCC Method 1005.

Comment 7: Soil and groundwater samples collected at the site should be analyzed for volatile organic compounds, semi-volatile compounds, and total petroleum hydrocarbons (TPH). The TPH analyses should be performed using TNRCC Method 1005. The chromatographs from TNRCC Method 1005 should be compared to one another to determine if the TPH mixture is consistent throughout the site. For each different TPH mixture, a sample should be analyzed using TNRCC Method 1006. TNRCC Method 1006 will fractionate the aromatic and aliphatic fractions which will allow MSCs for TPH to be established for each source area.

Response: Analyses for semi-volatile organic compounds are very expensive. We propose that SVOCs be run only on water and soil samples that show above laboratory detection limits for VOCs or TPH. For each different TPH mixture, a sample will be analyzed using TNRCC Method 1006.

Respectfully submitted,

Melvin G. Green, R.G.
Project Manager

MGG/EKim

NCC: Norman Hoppstein, Hoppstein Properties, Inc.
 John Morey, WRC, Inc
 CYP0065 - Corr

Figure 2
Site Sketch/Boring Location
Camelot Shopping Center
580 W. Arapaho Road
Richardson, Texas
Table Contents (Continued)

5.0 Impact Characterization
- 5.1 Soil Impact ... 5-1
- 5.2 Groundwater Impact 5-1
- 5.3 Contaminant Migration Potential 5-2
- 5.4 Groundwater Quality 5-2

6.0 Summary and Conclusions
- 6.1 Summary .. 6-1
- 6.2 Conclusions ... 6-1

7.0 Recommendations 7-1

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>Boring and Sampling Plan Rational</td>
<td>3-1</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Boring Locations</td>
<td>3-3</td>
</tr>
<tr>
<td>Table 3-3</td>
<td>Summary of Laboratory Results - Soils</td>
<td>3-4</td>
</tr>
<tr>
<td>Table 3-4</td>
<td>Summary of Laboratory Results - Groundwater</td>
<td>3-5</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Following Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Topographic Map/Site Location</td>
<td>1-2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Site Sketch/Boring Location</td>
<td>1-2</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Geologic Section</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Geologic Section</td>
<td>4-3</td>
</tr>
</tbody>
</table>

Plate

Final Survey, Part of Block "K", Third Section of Northrich West Addition, City of Richardson, Texas In Pocket
3.6 LABORATORY RESULTS

All samples were placed in laboratory supplied glassware, placed on ice, and either sent via commercial overnight delivery service or delivered to locally approved laboratories to be analyzed for VOCs by EPA Method 8260. Laboratory analytical results are presented in Appendix D.

3.6.1 SOILS

Relatively low concentrations of acetone were detected in select soil samples. One soil sample from MW-5 at a depth of 14 - 19 feet bgs also detected a low concentration of methyl isobutyl ketone. A summary of the soil laboratory analysis is shown in the table below.

<table>
<thead>
<tr>
<th>Sample ID Depth</th>
<th>Date Sampled</th>
<th>*Acetone</th>
<th>*Methyl Isobutyl Ketone</th>
<th>Sample ID Depth</th>
<th>Date Sampled</th>
<th>*Acetone</th>
<th>*Methyl Isobutyl Ketone</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1 (T-2')</td>
<td>12/20/99</td>
<td>166</td>
<td>ND</td>
<td>MW-1 (10'-12')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-2 (6'-2')</td>
<td>12/20/99</td>
<td>102</td>
<td>ND</td>
<td>MW-2 (10'-12')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-3 (T-2')</td>
<td>12/20/99</td>
<td>101</td>
<td>ND</td>
<td>MW-3 (10'-12')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>B-1 (F-2')</td>
<td>12/20/99</td>
<td>152</td>
<td>ND</td>
<td>B-1 (6'-3')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>HA-1</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
<td>HA-2</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-4 (6'-3')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
<td>MW-4 (7'-4')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-5 (13'-3')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
<td>MW-5 (14'-19')</td>
<td>02/11/00</td>
<td>360</td>
<td>1100</td>
</tr>
<tr>
<td>MW-6 (13'-3')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
<td>MW-6 (10'-12')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-7 (7'-4')</td>
<td>02/11/00</td>
<td>500</td>
<td>ND</td>
<td>MW-7 (10'-12')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
3.6.2 GROUNDWATER

Tetrachloroethene PCE, was detected in one groundwater sample. No other VOCs were detected in the sample from this well or another on-site well. A summary of the groundwater analysis results is provided in the following table.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date Sampled</th>
<th>*Acetone</th>
<th>*Methyl Isobutyl Ketone</th>
<th>Sample ID</th>
<th>Date Sampled</th>
<th>*Acetone</th>
<th>*Methyl Isobutyl Ketone</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA-3</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
<td>HA-4</td>
<td>02/11/00</td>
<td>1900</td>
<td>ND</td>
</tr>
</tbody>
</table>

* = Concentrations reported in micrograms per kilogram (µg/kg)
ND = Not detected at laboratory reporting level

5.0 IMPACT CHARACTERIZATION

5.1 SOIL IMPACT

Low concentrations of acetone were detected in the shallow samples (3’ to 2 feet) in MW-1, MW-2, MW-3, B-1, and HA-4. Acetone was also detected in the soil samples from MW-5 (14’-19 feet) and MW-7 (2’-4 feet). The concentrations varied from a high of 1900 µg/kg in the sample from HA-4 to a low of 101 µg/kg in MW-3. These levels are not considered of environmental significance. The MCL for acetone in soils, Texas Risk Reduction Standard Number 1, for groundwater protection in a residential area is 365,000 µg/kg.

5.2 GROUNDWATER IMPACT

Only MW-3 of the four monitoring wells sampled (three were dry when drilled) showed any contamination. MW-3 was sampled on three separate occasions, December 22, 1999, January 19, 2000, and February 15, 2000. PCE measured 33.3 µg/L for the first sampling event. To verify the result, two samples were taken on January 19, 2000, and sent to two separate laboratories. Results for this sampling event showed PCE at 36 µg/L and 41.2 µg/L. The sample taken on February 15, 2000, was taken so all wells could be sampled simultaneously. Results of the analysis on the sample were 22 µg/L.

Precalculated cleanup level for PCE for residential groundwater is 5 ppb (30 TAC 335.508 Appendix II). This level may be elevated 100 times if the water-bearing unit is a Class 3 aquifer either based on water quality being nonpotable (TDS greater than 10,000 mg/L) or the aquifer having a low yield of less than 150 gpd. No public water supply wells can be within 0.5 miles of the site. Based on our analysis of all available data developed to date, this shallow perched water body is a Class 3 aquifer (cannot sustain a yield of 150 gpd). Therefore, the cleanup level at this site for the PCE may be elevated to 500 ppb.
Related Goal: Camelot Shopping Center 1158 / 33158
Date: 05/25/2000
Comment: Mel Green called regarding the status of proposed sampling locations. I told him I just received proposed boring locations but no grid sampling. He said he would resend.

Reviewed faxes dated May 24 & 25, 2000 regarding proposed boring locations and grid sampling locations, respectively. I LM for Mel Green that the proposed locations appear to be adequate based on the submitted information.

Phyllis: For our phone conversation of 5/25/00, I am sending a proposed grid sampling location plan for the Camelot Shopping Center. As the parking lot is paved with asphalt, I would propose taking the samples at about 1 foot depth to make certain we are in native soil and sufficiently deep to avoid the influence of the paving hot mix. I will also sample at any drains and beneath roof vents (if any).

Samples from the grid will be analyzed for lead, chromium, arsenic and TPH.

Thanks,
Mel
Figure 2
Site Sketch/Boring Location
Carmelot Shopping Center
500 W. Arapaho Road
Richardson, Texas

Chiang, Patel & Yerby, Inc.
Geotechnical Engineers
1400 W. Post Oak Blvd, Suite 104
Houston, TX 77056

Legend
- Subject Property Boundary
- Ground Water Monitoring Well
- Soil Boring
- TBM 1 Temporary Bench Mark 1, EL 100.00

N = Sample Location

Bar Scale
50 25 0 100

Property Boundary
Walling

Note: Please review this sketch of the Carmelot Property and advise if the
proposed shallow test boring locations are satisfactory. The vent
is no longer used.

Thanks, Dan Green
VCP No. 115B
Carmelot Shopping Center
500 W. Arapaho Road
Richardson, Texas
May 4, 2000

Mr. Melvin Green
Chiang, Patel & Yerby, Inc.
4100 Amon Carter Boulevard, Suite 104
Fort Worth, TX 76155

Re: Agreement and Site Investigation Report (SIR) for Camelot Shopping Center, 580 West Arapaho Road, Dallas, Dallas County, Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Green:

Enclosed please find an copy of the executed Agreement. The Texas Natural Resource Conservation Commission (TNRCC) has reviewed the SIR dated March 2000. A list of the deficiencies we discussed on 26 April 2000 are enclosed. Please prepare a written response to each comment referencing the assigned TNRCC comment number, unless otherwise specifically requested in the enclosure. The information in the TNRCC reference line above should be included in your response.

A response to these comments must be submitted to my attention at the TNRCC at the letterhead address using mail code MC-221 and should be received on or before June 28, 2000. Should you need additional information or wish to discuss these comments or the due date, please call me at (512) 239-9730.

Sincerely,

Phyllis Primmrose, Project Manager
Voluntary Cleanup Section
Remediation Division

Enclosures

cc: Mr. Norman J. Hoppenstein, Hoppenstein Properties, Inc., Dallas, TX

Mr. Melvin Green
VCP No. 1158
March 27, 2000

General Comments

1) The Site is 6.5 acres. The sampling activities performed to date have been focused around the location of a former dry cleaning facility. In order for a certificate of completion to be issued for the entire site, the VCP requires that soil samples be collected from the entire site. Enclosed is a copy of the VCP guidance for sampling between source areas. The soil samples should be collected from the center of each grid.

2) Two soil samples were collected beneath the floor of the dry cleaner and one soil sample was collected beneath the sanitary sewer. The TNRCC requests that additional soil samples be collected along the sanitary sewer line, in the vicinity of the back door, adjacent to indoor and outdoor drains, and the ground surface beneath roof vents where vapors/condensate may have been released. The locations of these potential source areas should be shown on a map along with the sample locations.

3) Summary tables were not provided with the SIR. Please provide summary tables for all soil and groundwater samples collected to date. The tables should include the sample identification, collection date, depth, and analytical results for all analytes detected. The tables should also include the results of any samples collected for quality control/quality assurance. As you requested during our telephone conversation on 26 April 2000, enclosed is an example of a summary table.

4) The SIR adjusts the Media Specific Concentrations (MSC's) based on low-yield and states that the MSCs may be adjusted by a factor of 100 under Risk Reduction Standard (RRS) No. 2. The MSCs may be adjusted based on low yield only under RRS No. 3.

5) The SIR estimates the well yield using Method 1 of the Texas Risk Reduction Program Document, Volume II, Appendix VIII Section VIII-6, Procedures for Determination of Groundwater Resource Classification. Method 1 is not appropriate for the Austin Chalk Formation. For weathered limestone, the TNRCC requires that the well yield be determined by direct measurement. A minimum of three monitor wells should be tested that are spatially separated across the site. The monitor wells should be located and constructed such that the maximum yield is obtained. The test should be performed by operating a low flow pump at a rate of 0.1 gallons per minute. If a continuous flow is demonstrated, the test should be operated a minimum of 6 hours and extrapolated to a 24-hour yield. If the well purges dry, test should be repeated after the water level has recovered to 90% of the original water level. If the well again purges dry, well yield is less than 150 gallons per day.
6) The TNRCC requests that the water levels in each of the seven on-site monitor wells be recorded. If water is present, a groundwater sample should be collected and analyzed for the parameters listed under Comment No. 7.

7) Soil and groundwater samples collected at the site should be analyzed for volatile organic compounds, semi-volatile organic compounds and total petroleum hydrocarbons (TPH). The TPH analyses should be performed using TNRCC Method 1005. The chromatographs from TNRCC Method 1005 should be compared to one another to determine if the TPH mixture is consistent throughout the site. For each different TPH mixture, a sample should be analyzed using TNRCC Method 1006. TNRCC Method 1006 will fractionate the aliphatic and aromatic fractions which will allow MSCs for TPH to be established for each source area.

TEXAS NATURAL RESOURCE CONSERVATION
VOLUNTARY CLEANUP AGREEMENT

INTRODUCTION

This Agreement is entered into voluntarily by [Applicant] and the executive director of the Texas Natural Resource Conservation Commission (TNRCC). This Agreement is not and shall not be construed as an admission of any liability under the Texas Solid Waste Disposal Act or any other law or as a waiver of any defense to such liability. No approval hereunder or receipt of funds hereby shall be taken as a warranty as to sufficiency or efficacy of the response action. The purpose of this Agreement is to detail the obligations and functions of each party, related to the voluntary cleanup process at the [Site]. Voluntary Cleanup Program (VCP) number [VCP Number].

The activities conducted by the Applicant under this Agreement are subject to approval by TNRCC. The activities conducted by the Applicant shall be consistent with this Agreement, all applicable laws and regulations and any appropriate guidance documents. Applicant shall employ sound scientific, engineering and construction practices.

STATEMENT OF ELIGIBILITY

The executive director has determined that the application submitted by the Applicant is complete and that the Site is eligible to participate in the VCP established under Subchapter S of Chapter 361 of the Health and Safety Code (HSC). If the agency determines that the Applicant withheld or misrepresented information that would be relevant to the Site’s eligibility, the executive director may exercise his/her right to withdraw from this Agreement.

PARTIES BOUND

This Agreement shall apply to and be binding upon the Applicant, its officers, directors, principals, employees, receivers, trustees, agents, successors, subsidiaries over which the Applicant exercises control, and assigns and upon the TNRCC, its employees, agents and successors. The signatories to this Agreement certify that they are fully authorized to execute and legally bind the parties they represent. No change in ownership, corporate, or partnership status of the Applicant shall in any way alter its status or responsibilities under this Agreement unless Applicant or TNRCC withdraws from this Agreement.

The Applicant shall provide a copy of this Agreement to any subsequent business owners or successors before ownership rights are transferred. If the Applicant is also the owner of the Site, the Applicant shall provide a copy of this Agreement to prospective purchasers of the Site prior to transfer of title. The Applicant shall provide a copy of this Agreement to all contractors, subcontractors, laboratories, and consultants which are retained to conduct any work performed under this Agreement, within 14 days after the effective date of this Agreement or within 14 days after the date of retaining the services, whichever is later.
DEFINITIONS

"Site" means the area described in the VCP application, attached and incorporated herein as Exhibit "A" or, if the executive director approves the Applicant's request to address a partial response action area, then only that portion (e.g. partial response action area) of the area described in Exhibit "A".

ADDRESSES FOR ALL CORRESPONDENCE

Documents, including reports, approvals, notifications, disapprovals, and other correspondence to be submitted under this Agreement, may be sent by certified mail, return receipt requested, hand delivery, overnight mail or by courier service to the following addresses or to such addresses as the Applicant or TNRCC may designate in writing:

Documents to be submitted to TNRCC should be sent to:

Mailing Address

Project Manager
Voluntary Cleanup Section
MC-221
P.O. Box 13087
Austin, TX 78711-3087

Overnight/Express Mail Address

Project Manager
Voluntary Cleanup Section
12100 Park 35 Circle
Austin, TX 78753

Documents to be delivered to the Applicant should be sent to (include name, address and phone number):

1. [Address and Contact Information]

2. [Address and Contact Information]

COMPLIANCE WITH APPLICABLE LAWS

All work undertaken by the Applicant pursuant to this Agreement shall be performed in compliance with all applicable federal, state and local laws, ordinances and regulations, including, but not limited to, occupational safety and health administration, Department of Transportation and Resource Conservation and Recovery Act regulations. In the event of a conflict in the application of federal, state, or local laws, ordinances and regulations, the Applicant shall comply with the more/most stringent such laws, ordinances, or regulations, unless authorized otherwise in writing by TNRCC. Federal requirements shall be followed if they are the more/most stringent. However, as provided by HSC, Section 361.611 (a) state or local permit shall not be required, although the Applicant will coordinate with ongoing federal and state hazardous waste programs and must comply with the substantive requirements of an otherwise required state permit. Where it is determined that a permit is required under federal law, the Applicant shall submit timely and complete applications and take all other actions necessary to obtain all such permits or approvals. The Applicant shall be responsible for obtaining all federal permits which are necessary for the performance of any work hereunder.

APPLICABLE RULES AND REGULATIONS

The VCP rules, 30 Texas Administrative Code (TAC) 334, Subchapter A and the following rules or regulations are specifically designated as being directly applicable for the Site and must be followed. Citation of these rules does not imply that they are the only applicable rules.

- 30 TAC 334 (Petroleum Storage Tank Rules)
- 30 TAC 335 (Industrial Solid Waste & Municipal Hazardous Waste Rules, i.e. Risk Reduction Rules)
- Other

SUBMITTALS AND SCHEDULES

The following plans and reports were included with the voluntary cleanup application or this Agreement:

- Phase I Environmental Site Assessment (ESA)
- Phase II Limited Phase II ESA
- Other

In compliance with the aforementioned rules or regulations, the required submittals shall include a monthly status report, which details activities completed for the current month and those planned for the upcoming month. Future plans and reports should be prepared in accordance with the TNRCC VCP guidance document entitled Guidance for Initiating and Reporting Response Actions Conducted Under TNRCC's Voluntary Cleanup Program (RG-213). In order to complete the
necessary voluntary cleanup activities the following plans and reports will be submitted according to the schedule specified below (put anticipated date of submittal of report in blanks or NA if not applicable):

Additional reports anticipated at this time Yes ___ No ___

Monthly Status Report will be submitted by the ___ of each month

Phase ___ Site Investigation Work Plan
Phase ___ Site Investigation Report
Conceptual Environmental Assessment Model Report
Response Action Work Plan
Response Action Completion Report
Other reports (or indicate if attached Exhibit B) No other reports planned

Response to TNRCC comments on the aforementioned submittals shall be in accordance with time frames provided in TNRCC comment letters. Most comment letters specify a 60 day response time frame; however, applicants are encouraged to respond as soon as possible

Proposed future land use to be achieved

residential (i.e., unrestricted) ___
non-residential (i.e., commercial/industrial) ___
other (e.g., agricultural or recreational) ___

DESIGNATED PROJECT MANAGER

On or before the effective date of this Agreement, the TNRCC and the Applicant shall each designate a project manager. Each project manager shall be responsible for overseeing the implementation of this Agreement. The TNRCC project manager will be the TNRCC-designated representative at the Site. To the maximum extent possible, communications between the Applicant and TNRCC and all documents (including reports, approvals and other correspondence) concerning the activities performed pursuant to the terms and conditions of this Agreement shall be directed through the project managers. During implementation of this Agreement, the respective project managers shall, whenever possible, operate by consensus and shall attempt in good faith to resolve disputes informally through discussion of the issues. Each party has the right to change its respective project manager by notifying the other party in writing at least five days prior to the change.

ACCESS

To the extent that the Site or other areas where work is to be performed hereunder is presently owned or controlled by parties other than those bound by this Agreement, the Applicant shall obtain, or shall use its best efforts to obtain access agreements from the present owners. Best efforts shall include at a minimum, a certified letter from Applicant to the present owner of such property requesting an access agreement to permit Applicant, TNRCC, their authorized representatives and persons designated by the TNRCC in accordance with HSC Section 361.752(e) access to such property. Any such access agreement shall be incorporated by reference into this Agreement. Such an agreement shall provide access for Applicant, TNRCC and authorized representatives of TNRCC, and persons designated by the TNRCC in accordance with HSC Section 361.752(e) as specified below. In the event that such access agreement is not obtained, the Applicant shall so notify TNRCC, which may then, at its discretion, assist the Applicant in gaining access.

The Applicant shall provide authorized representatives of TNRCC access to the Site and other areas where work is to be performed at all reasonable times. Such access shall be related solely to the work being performed on the Site and shall include, but not be limited to: inspecting records, operating logs and contracts related to the Site, reviewing the progress of the Applicant in carrying out the terms of this Agreement, conducting such tests, inspections, and sampling as TNRCC may deem necessary, using a camera, sound recording, or other documentary type equipment for field activities, and verifying the data submitted to TNRCC by the Applicant hereunder. The Applicant shall permit TNRCC's authorized representatives to inspect and copy all records, files, photographs, documents, and other writings, including all sampling and monitoring data, which pertain to this Agreement and over which the Applicant may exercise control. All persons with access to the Site pursuant to this Agreement shall comply with submitted health and safety plans. The TNRCC does not approve health and safety plans.

DISPUTE RESOLUTION

This section (Dispute Resolution) shall apply to any dispute arising under any section of this Agreement, unless specifically excepted. It should be noted, that as provided for in HSC, Section 361.607, the executive director of the Applicant in its sole discretion may terminate the Agreement by giving 15 days advance written notice to the other.

The parties shall use their best effort to, in good faith, resolve all disputes or differences of opinion informally. If, however, disputes arise concerning this Agreement which the parties are unable to resolve informally, the Applicant may present written notice of such dispute to TNRCC and set forth specific points of dispute and the position of the Applicant. This written notice shall be submitted no later than five calendar days after the Applicant discovers the project managers are unable to resolve the dispute. The Applicant's project manager shall notify the TNRCC's project manager immediately by phone or other appropriate methods of communication prior to written notice, when he/she believes the parties are unable to resolve a dispute.
Within ten days of receipt of such a written notice, the TNRCC will provide a written response to the Applicant setting forth its position and the basis therefore. During the five calendar days following the receipt of the response, the parties shall attempt to negotiate in good faith a resolution of their differences. If during this negotiation period, the TNRCC concurs with the position of the Applicant, the Applicant will be notified in writing and this Agreement shall be modified to include any necessary extensions of time or variances of work.

Following the expiration of the previously described time periods, if no resolution of the disputed issue(s) has been reached, the executive director shall make a determination regarding the dispute, based upon and consistent with the terms of this Agreement, and will provide written documentation of such determination to the Applicant.

At this juncture, if dispute resolution fails, and either or both parties exercise their right to withdraw from the Agreement by giving 15 days advance written notice to the other, only those costs incurred or obligated by the TNRCC before notice of termination of the Agreement are recoverable under the Agreement.

RESERVATION OF RIGHTS

TNRCC and Applicant reserve all rights and defenses they may have pursuant to any available legal authority, unless expressly waived herein.

Nothing herein is intended to release, discharge, or in any way affect any claims, causes of action or demands in law or equity which the parties may have against any person, firm, partnership or corporation, or a party to this Agreement for any liability it may have arising out of, or relating in any way to the generation, storage, treatment, handling, transportation, release or disposal of any materials, hazardous substances, hazardous waste, contaminants or pollutants at, to or from the Site. The parties to this Agreement expressly reserve all rights, claims, demands, and causes of action they have against each other, and against any and all other persons and entities who are not parties to this Agreement.

The Applicant reserves the right to seek contribution, indemnity, or any other available remedy against any person other than TNRCC found to be responsible or liable for contribution, indemnity or otherwise for any amounts which have been or will be expended by the Applicant in connection with the Site.

During the term of this Agreement, TNRCC will not bring an enforcement action against Applicant for any violations of statutes or regulations for the specific violations or releases that are being remediated by this Agreement, unless the Applicant withdraws from this Agreement prior to completion of the cleanup. However, a responsible party remains liable for contamination should cleanup standards change or additional contamination be discovered. Non-responsible party Applicants have a release from liability upon issuance of the Certificate of Completion subject to statutory conditions in Section 361.610(c) HSC.
EFFECTIVE DATE AND SUBSEQUENT MODIFICATION

The effective date of this Agreement shall be the date on which this Agreement is signed by the Executive Director of TNRCC or his/her authorized representative.

This Agreement may be amended by mutual agreement of TNRCC and the Applicant. Amendments shall be in writing and shall be effective when signed by the Executive Director of TNRCC or his/her authorized representative.

TERMINATION AND SATISFACTION

The provisions of the Agreement shall be satisfied when TNRCC gives the Applicant written notice in the form of a Final Certificate of Completion that the Applicant has demonstrated to TNRCC's satisfaction that all terms of this Agreement have been completed, including the selection and implementation of a response action, when appropriate.

Nothing in the Agreement shall restrict the State of Texas from seeking other appropriate relief to protect human health or the environment from pollution or contamination at or from this Site not remediated in accordance with this Agreement.

SIGNATURES

Applicant A
By __________________________ (signature)
Date ____________
Name ____________________________ (print or type)
Title ____________________________

Applicant B
By __________________________ (signature)
Date ____________________________
Name ____________________________ (print or type)
Title ____________________________

Applicant C
By __________________________ (signature)
Date ____________________________
Name ____________________________ (print or type)
Title ____________________________

Applicant D
By __________________________ (signature)
Date ____________________________
Name ____________________________ (print or type)
Title ____________________________

TNRCC Representative
By __________________________ (signature of authorized representative)
Date ____________
Name ____________________________ (print or type)
Title ____________________________
TABLE 2
HISTORICAL GROUNDWATER ANALYTICAL DATA
(Analysis by EPA Method 8260)

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Sampling Date</th>
<th>1,2-dichloroethene</th>
<th>FC</th>
<th>Trichloroethylene</th>
<th>TCE</th>
<th>Vinyl Chloride</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MVW-2</td>
<td>11/1/97</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>12/4/97</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>1/14/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3/11/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4/14/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>5/15/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>6/15/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>7/17/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>8/17/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>11/1/99</td>
<td>Not Sampled - Well Abandoned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVW-3</td>
<td>11/1/97</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>12/4/97</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>1/14/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3/11/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4/14/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>5/15/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>6/15/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>7/17/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>8/17/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>1/1/99</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3/1/00</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>MVW-5</td>
<td>11/13/97</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>1/14/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2/10/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3/11/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4/14/98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>5/12/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>6/15/98</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>1/11/99</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3/28/00</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

ND = Not Detected
NS = Not Sampled
* NS = Not Sampled Due to Obstruction in Well
All Results in µg/L
TABLE 2
Investigation Analytical Data Summary

<table>
<thead>
<tr>
<th>Sample (S)</th>
<th>Soil Depth (H)</th>
<th>Total Arsenic (ppm)</th>
<th>Total Lead (ppm)</th>
<th>Total Chromium (ppm)</th>
<th>Total Cadmium (ppm)</th>
<th>Total Selenium (ppm)</th>
<th>Total Silver (ppm)</th>
<th>Total Mercury (ppm)</th>
<th>Total Copper (ppm)</th>
<th>Total Nickel (ppm)</th>
<th>TPH (mg/l)</th>
<th>Tl (mg/l)</th>
<th>Fe (mg/l)</th>
<th>Cu (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1204-15-1</td>
<td>1500</td>
<td>3.12</td>
<td>0.06</td>
<td>0.34</td>
<td>0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>0.06</td>
<td><0.05</td>
<td>4.04</td>
<td>0.56</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>1204-15-2</td>
<td>1500</td>
<td>5.30</td>
<td>0.27</td>
<td>0.26</td>
<td>0.08</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>0.12</td>
<td><0.05</td>
<td>5.04</td>
<td>0.2</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1505-15-1</td>
<td>1500</td>
<td>5.91</td>
<td>0.40</td>
<td>0.35</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>0.15</td>
<td><0.05</td>
<td>5.69</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1205-17-1</td>
<td>2048</td>
<td>3.46</td>
<td>0.23</td>
<td>0.25</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>0.12</td>
<td><0.05</td>
<td>3.59</td>
<td>0.4</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1205-17-2</td>
<td>2048</td>
<td>3.42</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3.59</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1205-17-3</td>
<td>21100</td>
<td>4.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>4.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1205-17-4</td>
<td>21100</td>
<td>4.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>4.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1205-17-5</td>
<td>21100</td>
<td>4.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>4.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1205-17-6</td>
<td>21100</td>
<td>4.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>4.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Notes: Values which exceed TNRCC and/or EPA Region 6 Soil Background/Downtown Specific Background are reported in boldface type.

Grid Sampling Between Source Areas

Effective Date: June 15, 1999

The area covered by a Certificate of Completion (COC) should be supported by sufficient soil and groundwater samples to confirm that contaminants if present, are at or below levels acceptable for residential or commercial land use, as appropriate. The Phase I environmental site assessment (ESA) should be used to identify potential sources of contamination, and samples should be collected at the necessary frequency and spacing to determine the nature and extent of contamination, but cannot be solely relied upon to indicate that other areas of a site are unimpacted by contamination and therefore eligible for a COC. In addition to soil and groundwater samples collected in source areas, additional surface soil samples should be collected between known or suspected source areas, or on other areas of the property where sources were not visually identified during the Phase I ESA. This is necessary to provide sufficient analytical data from soil samples to support the COC issued for a particular land use. If sampling between source areas is not performed, then these areas will not be covered by the COC. Surface soil samples collected to fulfill this goal should be located in a grid pattern. The size of the grid must be based on the future use of the property, specifically whether a residential or commercial/industrial COC is being sought.

The required sample grid described in the following sections, is based on the exposure areas outlined in the TNRCC consistency document entitled Implementation of the Existing Risk Reduction Rule—July 23, 1998 which can be found at http://www.tnrcc.state.tx.us/permitting/consirnr.htm.

COC FOR RESIDENTIAL LAND USE

For a residential COC, sampling should be conducted on a 70' X 70' grid representing a 1/8 acre exposure area. If the property is currently and historically undeveloped, the sampling grid can be expanded to 150' X 150' representing a 1/2 acre exposure area. However, the use of a larger exposure area must be noted in the COC and must be included in the deed records. The sampling frequency also applies to property underneath buildings where the building will not be used as a cap.

COC FOR COMMERCIAL INDUSTRIAL LAND USE

For a commercial/industrial COC, the sampling should be conducted on a 150' X 150' grid representing a ½ acre exposure area. If the property is currently and historically undeveloped, the sampling grid can be expanded to 200' X 200' representing a 1 acre exposure area. However, the use of a larger exposure area must be noted in the COC and must be included in the deed records. The sampling frequency also applies to property underneath buildings where the building will not be used as a cap.
Grid Sampling Between Source Areas

Effective Date: June 15, 1999

SAMPLING GUIDELINES

Surface samples collected from each grid point should utilize standard industry practices of sample collection, decontamination and preservation. In addition, surface samples should be collected within the upper 6" of soil, as opposed to directly from the surface, in order to avoid collecting samples that may have reduced concentrations of volatile organic contaminant (VOC) levels due to volatilization. The goal should be to collect samples that are representative of contaminant levels in the shallow subsurface. At a minimum, a single surface sample should be collected on each grid node to represent concentrations within the exposure area.

ANALYTICAL PARAMETERS

Surface soil samples should be analyzed for lead, chromium, arsenic and total petroleum hydrocarbons (TPH), at a minimum, and any other constituents that are present in the source areas, based on the historical use of the property or potential impacts from adjacent properties. Samples on undeveloped property with no on-site or off-site sources should be analyzed for these minimum parameters. An organic vapor field screening device should be used to evaluate all samples; the samples with the highest level noted with an organic vapor analyzer should be analyzed for VOCs. If no organic vapors are noted, then the samples with the highest levels of TPH should also be analyzed for VOCs. If no organic vapors or TPH is detected, then no further analysis is necessary.

CONTAMINATION DETECTED AT GRID POINTS

If contamination is detected at a grid sample location, then the result should be considered indicative of a potential source of contamination. Additional sampling should be performed to locate the source of contamination and the contamination delineated accordingly. The grid sampling approach is not generally appropriate for delineation of contamination from known or suspected source areas. This grid sampling investigation approach is also not to be used to vary from the exposure area acceptable for statistical evaluation of a source area.

GRID SAMPLING

March 27, 2000

Mr. Melvin Green
Chung, Patel & Verby, Inc.
4100 Ammon Carter Boulevard, Suite 104
Fort Worth, TX 76155

Re: Agreement and Site Investigation Report (SIR) for Camelot Shopping Center, 580 West Arapaho Road, Dallas, TX: Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Hoppenstein:

Enclosed please find an copy of the executed Agreement. The Texas Natural Resource Conservation Commission (TNRCC) has reviewed the SIR dated March 2000. A list of the deficiencies we discussed on April 2000 are enclosed. Please prepare a written response to each comment referencing the assigned TNRCC comment number, unless otherwise specifically requested in the enclosure. The information in the TNRCC reference line above should be included in your response.

A response to these comments must be submitted to my attention at the TNRCC at the letterhead address using mail code MC-221 and should be received on or before June 28, 2000. Should you need additional information or wish to discuss these comments or the due date, please call me at (512) 239-0730.

Sincerely,

Phyllis Primrose, Project Manager
Voluntary Cleanup Section
Remediation Division

cc: Mr. Norman J. Hoppenstein, Hoppenstein Properties, Inc.
Mr. Melvin Green
VCP No. 1158
March 27, 2000
Page 2 of 4

Enclosure
Camelot Shopping Center, VCP No. 1158
Site Investigation Report, March 2000

General Comments

1) The Site is 6.5 acres. The sampling activities performed to date have been focused around the location of a former dry cleaning facility. In order for a certificate of completion to be issued for the entire site, the VCP requires that soil samples be collected from the entire site. Enclosed is a copy of the VCP guidance for sampling between source areas. The soil samples should be collected from the center of each grid.

2) Two soil samples were collected beneath the floor of the dry cleaner and one soil sample was collected beneath the sanitary sewer. The TNRCC requests that additional soil samples be collected along the sanitary sewer line, in the vicinity of the back door, adjacent to indoor and outdoor drains, and the ground surface beneath roof vents where vapors/condensates may have been released. The locations of these potential source areas should be shown on a map along with the sample locations.

3) Summary tables were not provided with the SIR. Please provide summary tables for all soil and groundwater samples collected to date. The tables should include the sample identification, collection date, depth, and analytical results for all analytes detected. The tables should also include the results of any samples collected for quality control/quality assurance. As you requested during our telephone conversation on 26 April 2000, enclosed is an example of a summary table.

4) The SIR adjusts the Media Specific Concentrations (MSCs) based on low yield. The SIR states that the MSCs may be adjusted by a factor of 100 under Risk Reduction Standard (RRS) No. 2. The MSCs may be adjusted based on low yield only under RRS No. 3.

5) The SIR estimates the well yield using Method 1 of the Texas Risk Reduction Program (TRRP) Document, Volume II, Appendix VIII Section VIII.6, Procedures for Determination of Groundwater Resource Classification. Method 1 is not appropriate for the Austin Chalk Formation. For weathered limestone, the TNRCC requires that the well yield be determined by direct measurement. A minimum of 3 monitor wells should be tested that are spatially separated across the site. The monitor wells should be located and constructed such that the maximum yield is obtained. The test should be performed by operating a low flow pump at a rate of 0.1 gallons per minute. If a continuous flow is demonstrated, the test should be operated a minimum of 6 hours and extrapolated to a 24-hour yield. If the well purges dry, the test should be repeated after the water level has recovered to 90% of the original water level. If the well again purges dry, well yield is less than 150 gallons per day.

6) The TNRCC requests that the water levels in each of the seven on-site monitor well be recorded. If water is present, a groundwater sample should be collected and analyzed for the parameters listed under Comment No. 7.

7) Soil and groundwater samples collected at the site should be analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and total petroleum hydrocarbons (TPH). The TPH analyses should be performed using TNRCC Method 1005. The chromatographs from TNRCC Method 1005 should be compared to one another to determine if the TPH mixture is consistent throughout the site. For each different TPH mixture, a sample should be analyzed using TNRCC Method 1006. TNRCC Method 1006 will fractionate the aliphatic and aromatic fractions which will allow MSCs for TPH to be established for each source area.
Related Goal: Camelot Shopping Center 1158 / 33158
Date: 04/26/2000
Comment: Discussed TNRCC comments regarding SIR with Melvin Green (consultant). Mr. Green stated that the dry cleaner is currently occupied by a small grocery store. Mr. Green stated that the site is primarily covered with asphalt. Mr. Green stated that MW-3 is located in a grassy area "formerly occupied by a dumpster". I asked Mr. Green to identify, on a map, the locations of all uncovered areas on the site.

Mr. Green said he has not checked the water levels in the wells since the last sampling events. the wells are still available for sampling.

Mr. Green asked if grid samples should be collected in center of grid or grid nodes. I said center.

Mr. Green requested an example of summary tables.

Mr. Green asked if he needed to resample areas that had already been sampled. This relates to the TNRCC request for additional soil samples near sanitary sewer, dumpster, vent pipes, and drains. I told him if the areas had been sampled for the COCs, then just provide a written description of this and provide locations of potential source areas on map. In other words, show the locations of the dumpster, sanitary sewer, vent pipes, drains, etc. on a map with the locations of soil samples.

Mr. Green said the soil type was correct when I told him he had to use Method 2 to determine yield (direct measurement). Mr. Green said the soil type is "clay" not weathered limestone. I told him based on the geology described at surrounding VCP sites, the water-bearing unit is "weathered limestone". Therefore, direct measurement is required. Mr. Green said MW-3 may not bail dry in 24 hours but might in 30 hours. Then consider recharge. Also MW-3 appears to yield the most water. I asked what the difference was between MW-3 and the other wells. Mr. Green said MW-3 is located in a grassy area. I told Mr. Green that the fact that the wells are installed in covered areas may be affecting the yield. This should be taken into account when performing the yield test. Mr. Green said he does not want to perform yield test in MW-3 because MW-3 is contaminated and there would be a cost for disposing purged water. I told him that "if the yield is less than 150-gallons" the cost for disposal should be minimal. Mr. Green said should just do a "risk assessment" and save the applicant money. I cautioned Mr. Green that a "risk assessment" may not be less expensive in the long run, but that is his decision.
Texas Natural Resource Conservation Commission
Voluntary Cleanup Section
MC-221
12100 PMK 35 Circle
Austin, TX 78753
ATTN: Phyllis Primrose

RE: Camelot Shopping Center, 580 West Arapaho Road, Dallas, TX, Voluntary Cleanup
Program No. 1158

Dear Ms. Primrose:

Enclosed please find the Voluntary Cleanup agreement referenced in your letter of March 27, 2000. I appreciate your assistance on this project.

Should you have administrative questions please call me. Technical questions should be addressed to Mel Green at (817) 354 0189.

Sincerely,

Norman J. Hoppestein

Encl: as
March 27, 2000

Mr. Norman J. Hoppenstein
Hoppenstein Properties, Inc.
P.O. Box 796023
Dallas, TX 75379-6023

Re: Camelot Shopping Center, 580 West Arapaho Road, Dallas, TX; Voluntary Cleanup Program (VCP) No. 1158

Dear Mr. Hoppenstein:

The Texas Natural Resource Conservation Commission (TNRCC) has received the application submitted pursuant to §361.604 of the Texas Solid Waste Disposal Act for assistance and review of site investigation and cleanup activities for the above referenced site. After careful review, the application is determined to be administratively complete, and is eligible for the VCP.

As specified by the Texas Voluntary Cleanup statute, the person participating in the VCP must enter into a voluntary cleanup agreement that outlines the criteria for participation in the VCP, including a schedule for submission of plans and reports and identification of the appropriate rules to govern cleanup activities. A VCP agreement may be downloaded from the Internet at http://www.tnrrc.state.tx.us/permitting/remed/vcp. Prior to any assistance and review of plans and reports, the agreement must be signed by the applicant and the TNRCC. Please contact me within 15 days of this letter to negotiate the terms and conditions of the agreement that are specific to this site.

I look forward to working with you on the cleanup of this site. Please reference VCP No. 1158 on the front of any future letters or reports. Future submittals should be mailed to my attention at the TNRCC, Voluntary Cleanup Section, mail code MC-221, at the letterhead address. You may contact me with any questions at (512) 239-0730.

Sincerely,

Phyllis Primrose, Project Manager
Voluntary Cleanup Section
Remediation Division

P.S.
Texas Natural Resource Conservation Commission
March 10, 2000
Page Two

My consultant, Mr. Mel Greer with Chiang, Patel & Yerby, Inc., has previously had an excellent working relationship with Ms. Tara Eckels, Project Manager for TNRCC. Ms. Eckels' customer care policy has been outstanding. We respectfully request that Ms. Eckels be assigned Project Manager for this project.

Should you have questions concerning technical issues, please contact my consultant, Mr. Mel Greer, at (817) 354-0189. All other questions should be directed to me at (972) 901-4000.

Thank you for your attention to this matter.

Sincerely,

Norman Hoppenstein
Vice President
Hoppenstein Properties, Inc.

Enclosures

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION VOLUNTARY CLEANUP PROGRAM

Program Application

Please complete this form to request assistance and review from the Texas Natural Resource Conservation Commission (TNRCC) staff in the Voluntary Cleanup Program (VCP) pursuant to §361.604 of the Texas Solid Waste Disposal Act.

Complete all applicable sections. The TNRCC may reject incomplete or inaccurate applications as per §361.605 of the VCP statute. Please refer to the VCP Application Instructions or call the TNRCC's Voluntary Cleanup Section at (512) 239-5891 with any questions concerning the completion of this form.

General Site Information

- **Site name:** Camelot Shopping Center
- **Address:** 380 West Arapaho Road
- **City:** Richardson
- **County:** Dallas
- **Zip Code:** 75080
- **Latitude (degrees, minutes, seconds):** 32° 52’ 34”
- **Longitude (degrees, minutes, seconds):** 96° 46’ 03”
- **Site size (acres):** 6.6
- **Contaminant Type:** VOC

Applicant(s)

Applicant A (The person or entity seeking review and approval of a plan or report and/or issuance of a VCP Certificate of Completion by the TNRCC. Applicant A is responsible for payment of TNRCC costs of review and oversight unless indicated otherwise on page 2 of this form).

- **Applicant:** Norman T. Hoppenstein
- **Title:** Vice President

Organization: Hoppenstein Properties, Inc.
- **Phone:** (972) 931-4009
- **Fax:** (972) 931-4002
- **Address:** P.O. Box 796023
- **City:** Dallas
- **State:** Texas
- **Zip Code:** 75239-6023

Applicant B

- **Applicant:**
- **Title:**
- **Organization:**
- **Address:**
- **City:**
- **State:**
- **Zip Code:**

Form TNRCC 10241 Revised 11/99
Applicant C
Applicant
Contact Person
Organization
Address

Current Site Owner (if different from an applicant)
Owner(s)
Contact Person
Organization
Address
City
State
Zip Code

Other Contacts (Consultant/Attorney)
Name(s)
Organization
Address
City
State
Zip Code

Billing Information
If billing should be directed to a person other than Applicant A, please enter the required information below and include their signature consenting to the obligation for payment of TNRCC oversight costs.
Name(s)
Organization
Address
City
State
Zip Code

Current Property Use
Residential
Non-residential
Other (e.g., agricultural, recreational)

Is a real estate transaction imminent for this site? Yes _ No _
If yes, what is the planned closing date? March 16, 2009

Involvement With Other Regulatory Programs
Has there been any prior contact with any state or federal environmental regulatory programs or agencies relating to environmental issues at this site? Yes _ No _
If yes, please describe all prior contact with any state or federal environmental regulatory programs or agencies which relate to the site in question, especially any orders, permits, notices of violations or inspections. Attach additional sheets as necessary.

Is a request for reimbursement pre-approval currently under review by the Petroleum Storage Tank (PST) Program? Yes _ No _
If yes, then please describe the site's status in the PST Program.

Please provide any and all state and federal identification numbers related to the property in question, including any solid waste (SWR), leaking petroleum storage tank (LPST), CERCLIS, RCRA, UIC, etc. all registration numbers which have been assigned.

Applicant's Intended Response Action Objectives (Cleanup Levels)
Not known at this time. Applicant wishes to receive guidance from VCP staff prior to the signing of a VCP agreement.

Risk Reduction Rules (30 TAC Chapter 333 - Subchapter S)
- Cleanup to background (i.e. Risk Reduction Standard 1).
- Cleanup to generic risk-based levels (following Risk Reduction Standard 2 requirements).
- Cleanup to site specific risk-based levels not relying on engineering or institutional controls (following Risk Reduction Standard 3 requirements).
- Applying for Certificate of Completion based on adjusted Medium-Specific Concentrations Standards and Criteria for Health-Based Closure/Remediation (not completed).
- Concentration of Risk Reduction Standards No.
Federal Brownfields Tax Deduction

Are you requesting a "qualified contaminated site" and the cleanup costs are eligible for a federal tax deduction under the Taxpayer Relief Act of 1997 (HR 2014)? Yes □ No □ Yes, if so, please read the application instructions for more information about this tax deduction.

State Property Tax Abatements for Brownfields

Are you interested in signing an agreement with the local taxing authority to receive a property tax abatement after issuance of the VCP Certificate of Completion, as allowed under Section 312.211 of the Texas Tax Code? Yes □ No □ Yes, if so, please read the application instructions for more information about this tax abatement.

Environmental Assessment

An environmental assessment that includes the following information must be attached to this application:

1. a legal description of the site, including a site map drawn to scale;
2. the physical characteristics of the site;
3. the operational history of the site, to the extent the history is known by the applicant;
4. information that the applicant is aware of concerning the nature and extent of any contamination and/or release at the site and in areas contiguous to the site; and
5. relevant information the applicant is aware of concerning the potential for human and/or environmental exposure to contamination at or emanating from the site.

Intent to Participate

The undersigned requests oversight by the TNRCC of investigation and cleanup activities of possible contamination at the property described above and intends to negotiate in good faith, a written agreement with the TNRCC to provide technical and regulatory oversight. This Intent to Participate does not constitute such an agreement and neither TNRCC nor the undersigned will be bound to proceed with VCP oversight unless such an agreement is executed. Applicants should be aware that in order for the TNRCC to issue a VCP Certificate of Completion for an entire site, the applicant must provide adequate information to document that the entire site meets the applicable standards. As an alternative, the applicant may pursue a VCP Certificate of Completion for only a portion of the site, as a partial response action area. The agreement will describe the project activities of each party and will require Applicant A (unless indicated otherwise on page 2 of this form) to reimburse the TNRRC for all of its oversight costs. By completing and signing this Intent to Participate, the undersigned does affirm the applicant's financial capability to perform the voluntary cleanup. The Executive Director may request additional information to support this affirmation.
With this Intent to Participate, the undersigned does not admit or assume liability for investigation or cleanup of the site. In addition, the undersigned may terminate the Intent to Participate at any time. If the TNRCC rejects the application, it will notify the applicant and explain the reasons for rejection and will refund half of the application deposit, unless the applicant indicates a desire to resubmit a corrected application. An applicant can resubmit an application once without submitting an additional application fee, if the applicant resubmits within 45 days after the rejection notice date.

Deposit of Oversight Costs

The applicant must submit with this application, a deposit in the amount of one thousand dollars ($1,000), made payable to the Texas Natural Resource Conservation Commission. Deposits may be made in the form of company or personal checks. If a deposit check is returned due to insufficient funds, the application will be considered incomplete and will be rejected. Cash deposits will not be accepted.

Please execute this Intent to Participate in the space below and return it and all associated documents (e.g., environmental assessment reports) to:

Attention: Cashier
Texas Natural Resource Conservation Commission
MC-214
P.O. Box 13088
Austin, Texas 78711-3088

For overnight or express mail please use the following street address:

Attention: Cashier
Texas Natural Resource Conservation Commission
MC-214
12100 Park 35 Circle
Austin, Texas 78753

Note: Please do not send the application and associated documents directly to the VCP. This will only result in a delay in processing your application.

Correctness of Information

The undersigned affirm that the information contained in this application is true and accurate to the best of their knowledge.
TENAS NATURAL RESOURCE
CONSERVATION COMMISSION
VOLUNTARY CLEANUP PROGRAM

Program Application 33159

Complete this form to request assistance and review from the Texas Natural Resource Commission (TNRCC) staff in the Voluntary Cleanup Program (VCP) pursuant to §361.604 of the Texas Solid Waste Disposal Act.

Complete all applicable sections. Incomplete or inaccurate applications may be rejected as per §361.605 of the VCP statute. Please refer to the application instruction sheet or call (512) 239-5891 with any questions concerning the completion of this form.

General Information

Property/Site name: TXU Main Road Property (“Property or Site”)
Address: 2702 Flynn Street
City: Dallas State: Texas Zip Code: 75201
Latitude: 32° 47 33' Longitude: 96° 48 33'
Property size (acres): 39.581 square feet

Applicant(s)

Applicant A (The person seeking review and approval of a plan or report, and/or issuance of a Certificate of Completion by the TNRCC. Applicant A is responsible for payment of TNRCC costs of review and oversight unless indicated otherwise on page 2 of this form.)
Applicant: Anland LAIC, L.P.
Contact Person: Darcy Anderson
Title: Vice President
Organization: Anland Holdings I, Inc., General Partner of Anland G.P. No 1, L.P., General Partner of Anland LAIC, L.P.
Phone: (214) 758-3600 Fax: (214) 758-3630
Address: 1845 Woodall Rodgers Freeway, Suite 1700
City: Dallas State: Texas Zip Code: 75201
Interest in Property: Developer

Applicant B
Applicant: City of Dallas
Contact Person: Mr. David Dybala
Title: Director of Public Works and Transportation
Organization: Municipality
Phone: (214) 670-1202
Address: 1500 Marilla
City: Dallas State: Texas Zip Code: 75201
Interest in Property: Future Owner

OVERSIZE DOCUMENTS, MAPS, & PHOTOS

Record Series:
File #:

The below listed documents, from the above referenced file, that belong in this location in the file were not microfilmed because of their size and/or media format. See the Records staff for the location of the following oversize documents and/or photographs:

<table>
<thead>
<tr>
<th>DATE ON DOCUMENT</th>
<th>DESCRIPTION OF DOCUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8
VOLUNTARY CLEANUP PROGRAM

☑ New Microfiche File
☐ Update to Existing Microfiche File

VCP ID# 1158

SITE NAME CAMELOT SHOPPING CENTER

TXD# ___________________________

SW Reg# ________________________

FILE STRUCTURE CATEGORY (select 1):
☐ Correspondence
☐ Financial Documentation
☐ Historical Information
☐ Legal Documentation
☑ Work Plans & Reports

SUPPLEMENTAL REPORT TO SITE INVESTIGATION REPORT

CAMELOT SHOPPING CENTER
580 West Arapaho Road
Richardson, Texas

6.4-ACRE SITE

Prepared for:

HOPPENSTEIN PROPERTIES, INC.
P.O. Box 796023
DALLAS, TEXAS

Prepared by:

CHIANG, PATEL & YERBY, INC.
CONSLULTING ENGINEERS • PLANNERS • PROJECT MANAGERS
FORT WORTH • DALLAS • AUSTIN • HOUSTON • SAN ANTONIO • MCKINNEY, TEXAS • OKLAHOMA CITY, OKLAHOMA

CP&Y Project No.: CYP0005

July 2000
SUPPLEMENTAL REPORT TO SITE INVESTIGATION REPORT

CAMELOT SHOPPING CENTER
580 West Arapaho Road
Richardson, Texas
6.4-ACRE SITE

Prepared for:
HOPPENSTEIN PROPERTIES, INC.
P.O. Box 796023
DALLAS, TEXAS

Prepared by:
CHIANG, PATEL & YERBY, INC.
CONSULTING ENGINEERS • PLANNERS • PROJECT MANAGERS
FORT WORTH • DALLAS • AUSTIN • HOUSTON • SAN ANTONIO • MCKINNEY, TEXAS • OKLAHOMA CITY, OKLAHOMA
CP&Y Project No.: CYP0095
July 2000

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1.0</td>
</tr>
<tr>
<td>2-1</td>
<td>2.0</td>
</tr>
<tr>
<td>2-1</td>
<td>2.1</td>
</tr>
<tr>
<td>2-1</td>
<td>2.2</td>
</tr>
<tr>
<td>2-1</td>
<td>2.3</td>
</tr>
<tr>
<td>2-2</td>
<td>2.4</td>
</tr>
<tr>
<td>3-1</td>
<td>3.0</td>
</tr>
<tr>
<td>3-1</td>
<td>3.1</td>
</tr>
<tr>
<td>3-1</td>
<td>3.1.1</td>
</tr>
<tr>
<td>3-1</td>
<td>3.1.2</td>
</tr>
<tr>
<td>3-1</td>
<td>3.1.3</td>
</tr>
<tr>
<td>4-1</td>
<td>4.0</td>
</tr>
<tr>
<td>4-1</td>
<td>4.1</td>
</tr>
<tr>
<td>4-2</td>
<td>4.2</td>
</tr>
<tr>
<td>5-1</td>
<td>5.0</td>
</tr>
<tr>
<td>5-1</td>
<td>5.1</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-2</td>
<td>3-1</td>
</tr>
<tr>
<td>3-1</td>
<td>3-2</td>
</tr>
<tr>
<td>3-4</td>
<td>3-3</td>
</tr>
<tr>
<td>4-1</td>
<td>3-4</td>
</tr>
<tr>
<td>4-1</td>
<td>4-1</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Following Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
</tr>
<tr>
<td>2-1</td>
</tr>
<tr>
<td>4-1</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

In March 2000, Chiang, Patel & Yerby, Inc. (CP&Y), prepared and submitted a Site Investigation Report (SIR) for the Camelot Shopping Center in Richardson, Texas, along with an application for acceptance into the Voluntary Cleanup Program (VCP) to the Texas Natural Resource Conservation Commission (TNRCC). On May 4, 2000, the TNRCC furnished review comments to this report. CP&Y prepared and submitted a response to the review comments on June 1, 2000.

In accordance with the TNRCC comments, CP&Y performed additional field investigations at the Camelot Shopping Center during the week of June 19, 2000. Borings were drilled and samples taken from nine shallow geoprobe borings (grid sampling). In addition, two hand auger borings were drilled at floor drains inside the building in Suite 200 that previously housed a dry-cleaning facility. Three borings were also drilled to sample beneath a vent and along the sewer line leading from the suite. All seven monitoring wells were purged and sampled.

Shallow samples from the grid borings were tested for TPH, arsenic, chromium, and lead. The hand auger borings inside the building and along the sewer line were tested for TPH and VOCs. Water from the monitoring wells was tested for VOCs. In one well that tested positive for VOCs, the water was also tested for SVOCs.

Additional data supporting our request for a Certificate of Completion for the subject property under Risk Reduction Standards Number 3 is contained in this Supplemental Report.
2.0 FIELD INVESTIGATIONS

2.1 DRILLING AND SAMPLING

Total Support Services, Inc., Dallas, Texas, drilled using a truck-mounted geoprobe taking continuous 1.5" split spoon samples. The geoprobe unit and sampling tools were decontaminated between each sampling event, between borings, and at completion of the geoprobe project. The drilling was performed on June 19, 2000. Boring logs of all borings drilled during this event are included in Appendix A.

2.2 GRID BORINGS

The 6.4-acre Camelot property was subdivided into 150' by 150' squares. The shallow soil immediately beneath the asphalt pavement and subbase was sampled. Samples were placed in 8-ounce glass jars and preserved in a cooler with ice until delivery to the testing laboratory. The locations of the geoprobe borings are shown on Figure 1.

2.3 FLOOR DRAIN BORINGS

Two floor drains in Suite 200 were concealed under mats and crates and were not discovered during the Phase I investigation. Hand auger borings were drilled adjacent to each drain. The borings were advanced to refusal with the hand auger, and bottomed in a tan-to-cream clay with chalky concretions. Samples were placed in 8-ounce glass jars and placed in a cooler with ice for delivery to the testing laboratory. Samples were collected every two feet and field-screened for relative VOC concentrations using a hand-held organic vapor meter (OVVM). Locations of the drains and hand auger borings are shown on Figure 2.
2.4 BACK DOOR, VENT, AND SEWER BORINGS

Boring GP-1 was drilled adjacent to the back door and along the sewer line. Evidence of the sewer is shown by two sewer clean-outs in the sidewalk adjacent to boring GP-1. Boring GP-2 was drilled beneath the wall vent coming from the building. Boring GP-3 was drilled along the sewer line leading from the building to a manhole just off the property. An inspection of the manhole revealed the line coming from the building into the manhole. The locations of these borings, along with other borings drilled in the immediate vicinity, are shown on Figure 2.

Figure 2 also shows locations of the sewer line and manhole. Soil samples from the borings were collected in 8-ounce jars and kept in an ice-filled cooler until delivered to the testing laboratory. Samples were also taken every two feet and screened with an OVM for VOC presence.
3.0 LABORATORY RESULTS

3.1 LABORATORY RESULTS

All samples were placed in laboratory-supplied glassware, placed on ice, and delivered to a locally approved laboratory. Analyses were conducted for VOCs by EPA Method 8260, TPH using TNRCC Method 1005, and metals using test procedure SW84610B. Laboratory analytical results for the last investigations (June 19 - 22, 2000) are presented in Appendix B. Summary tables for all laboratory tests are provided below.

3.1.1 SOILS - VOCs

Relatively low concentrations of acetone were detected in select soil samples. One soil sample from MW-5 at a depth of 14 - 19 feet bgs also detected a low concentration of methyl isobutyl ketone. Table 3-1 gives a summary of the soil laboratory analysis for VOCs.

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>DATE SAMPLED</th>
<th>*ACETONE (ppm)</th>
<th>*METHYL ISOBUTYL KETONE</th>
<th>SAMPLE ID</th>
<th>DATE SAMPLED</th>
<th>*ACETONE (ppm)</th>
<th>*METHYL ISOBUTYL KETONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1 (2'-2')</td>
<td>12/20/99</td>
<td>102</td>
<td>ND</td>
<td>MW-1 (1'-2')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-2 (4'-2')</td>
<td>12/20/99</td>
<td>102</td>
<td>ND</td>
<td>MW-2 (1'-2')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-3 (1-2')</td>
<td>12/20/99</td>
<td>102</td>
<td>ND</td>
<td>MW-3 (1'-2')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>B-1 (1'-2')</td>
<td>12/20/99</td>
<td>102</td>
<td>ND</td>
<td>B-1 (1'-2')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>HA-1 (4'-6')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
<td>HA-2 (4'-6')</td>
<td>12/20/99</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-1 (0.5')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
<td>MW-4 (1'-0')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-3 (1)-3'</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
<td>MW-5 (1)-3'</td>
<td>02/11/00</td>
<td>560</td>
<td>1100</td>
</tr>
<tr>
<td>MW-6 (1)-3'</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
<td>MW-6 (1)-3'</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW-7 (2)-2'</td>
<td>02/11/00</td>
<td>500</td>
<td>ND</td>
<td>MW-7 (1)-2'</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>HA-3 (2')</td>
<td>02/11/00</td>
<td>ND</td>
<td>ND</td>
<td>HA-4 (4'-6')</td>
<td>02/11/00</td>
<td>1900</td>
<td>ND</td>
</tr>
<tr>
<td>GP-4 (8'-10')</td>
<td>06/19/00</td>
<td>ND</td>
<td>ND</td>
<td>GP-2 (8)-10'</td>
<td>06/19/00</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>GP-4 (8)-10'</td>
<td>06/19/00</td>
<td>ND</td>
<td>ND</td>
<td>GP-2 (8)-10'</td>
<td>06/19/00</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>HA-6 (6)-8'</td>
<td>06/19/00</td>
<td>ND</td>
<td>ND</td>
<td>HA-6 (8)-8'</td>
<td>06/19/00</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

* = Concentrations reported in micrograms per kilogram (µg/kg)
ND = Not detected at laboratory reporting level
3.1.2 SOILS - METALS

The Camelot Shopping Center property was divided into approximately 150 x 150 grids and shallow geoprobe samples were taken in the center of each grid. A total of nine samples were taken at the shopping center and tested for total petroleum hydrocarbons using TNRCC Method 1005. Test procedure SW6010B was used for arsenic, chromium, and lead. All test results for TPH were below laboratory detection levels, with total arsenic always less than 3.5 mg/kg. Total chromium varied from a low of 15 mg/kg to a high of 27 mg/kg. Total lead measured from a low of 6.9 mg/kg to a high of 26 mg/kg. A summary of the results is given in Table 3-2.

Table 3-2
Summary of Laboratory Results - Soils Metals

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>DEPTH (ft.)</th>
<th>DATE SAMPLED</th>
<th>ARSENIC (mg/kg)</th>
<th>CHROMIUM (mg/kg)</th>
<th>LEAD (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA1</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>GPA2</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>GPA3</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>GPA4</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>19</td>
<td>7.5</td>
</tr>
<tr>
<td>GPA5</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>GPA6</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>GPA7</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>GPA8</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>15</td>
<td>6.9</td>
</tr>
<tr>
<td>GPA9</td>
<td>15-2</td>
<td>06/19/00</td>
<td><1.5</td>
<td>24</td>
<td>19</td>
</tr>
</tbody>
</table>

3.1.3 GROUNDWATER

Water samples from all monitoring wells were tested for VOCs and TPH. PCE (Tetrachloroethene) was detected in groundwater samples from only one well (MW-3). No other

VOCs were detected in the sample from this well or any other well on site. Groundwater from MW-3 was also analyzed for SVOCs with no compounds detected above laboratory detection levels. No TPH above laboratory detection levels was found. A summary of the groundwater analysis results for the June 19 - 22, 2000 field investigation is provided in Table 3-3. Laboratory results of all groundwater tests are included in Appendix B.

Table 3-3
Summary of Laboratory Results - Groundwater

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>DATE SAMPLED</th>
<th>PCE</th>
<th>TCE</th>
<th>DCE</th>
<th>VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW3</td>
<td>12/22/99</td>
<td>33</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW3</td>
<td>01/19/00</td>
<td>41</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW3</td>
<td>01/19/00</td>
<td>36</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW3</td>
<td>02/13/00</td>
<td>22</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW3</td>
<td>06/22/00</td>
<td>39</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW1</td>
<td>02/13/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW1</td>
<td>06/22/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW2</td>
<td>02/13/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW2</td>
<td>06/22/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW4</td>
<td>06/22/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW5</td>
<td>02/13/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW6</td>
<td>06/22/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>MW7</td>
<td>06/22/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>TRIP BLK</td>
<td>02/13/00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

* = PCE reported as micrograms per liter (µg/L) or parts per billion (ppb) equivalent
ND = Not detected at the laboratory reporting level
4.0 GROUNDWATER HYDROLOGY

4.1 WATER LEVELS

Seven groundwater monitoring wells have been drilled and constructed across the property to define geology and groundwater characteristics. Only two of the wells had water at the time of drilling. After heavy spring and early summer rains, water was present in all wells. Water levels were measured on June 19, 2000. The wells were purged on June 20, 2000, and sampled on June 22, 2000. Well locations and elevations were surveyed using a temporary BM with an assumed elevation of 100.00.

Table 4-1 shows the relative elevations on the north side of the two-inch PVC casing and water levels measured from the same spot on the casing.

Table 4-1 Water Level Elevations

<table>
<thead>
<tr>
<th>MONITORING WELL NO.</th>
<th>DATE</th>
<th>TIME</th>
<th>ELEVATION OF CASING</th>
<th>DEPTH TO WATER</th>
<th>ELEVATION OF WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>06/19</td>
<td>1540</td>
<td>100.34</td>
<td>12.70</td>
<td>87.64</td>
</tr>
<tr>
<td>MW-2</td>
<td>06/19</td>
<td>1325</td>
<td>100.02</td>
<td>8.39</td>
<td>91.63</td>
</tr>
<tr>
<td>MW-3</td>
<td>06/19</td>
<td>1550</td>
<td>100.17</td>
<td>9.13</td>
<td>91.04</td>
</tr>
<tr>
<td>MW-4</td>
<td>06/19</td>
<td>1440</td>
<td>96.25</td>
<td>3.77</td>
<td>92.48</td>
</tr>
<tr>
<td>MW-5</td>
<td>06/19</td>
<td>1620</td>
<td>94.84</td>
<td>7.18</td>
<td>91.63</td>
</tr>
<tr>
<td>MW-6</td>
<td>06/19</td>
<td>1610</td>
<td>96.33</td>
<td>7.04</td>
<td>89.49</td>
</tr>
<tr>
<td>MW-7</td>
<td>06/19</td>
<td>1600</td>
<td>100.61</td>
<td>9.16</td>
<td>91.45</td>
</tr>
</tbody>
</table>

* Measurements and elevations are in feet

Provided all water levels are true and accurate static levels, the groundwater gradient slopes gently to the east-southeast as shown on Figure 3.

Chiang, Patel & Yerby, Inc.
Consulting Engineers
1500 Trinity Blvd, Suite 200
Fort Worth, Texas 76106
4.2 PURGING AND SAMPLING OF WELLS

A small battery-operated submersible pump, Model DC60 Purging Pump, was used to purge the monitoring wells before sampling. The pump discharge was measured at 1.0 gallon per minute (gpm). In each case the pump was set at the bottom of the well. All monitoring wells were pumped until dry on June 20, 2000. The pump was decontaminated between each well and before and after sampling began. An account of the pumping follows.

Monitoring Well 1. MW-1 had a water column of 6.94 feet resulting in a casing volume of 1.2 gallons (wells are constructed with 2-inch casing in an 8-inch bore). A total of four gallons of water was pumped from the well before the well pumped dry.

Monitoring Well 2. The water column in this well was 11.13 feet with a casing volume of 1.9 gallons. MW-2 was bailed on June 19, 2000, before it was decided to pump the wells. At this time, six gallons of water were bailed from the well. During pumping on June 20, 2000, the well pumped dry after three gallons.

Monitoring Well 3. MW-3 had a water column of 10.35 feet with a casing volume of 1.8 gallons. The well pumped dry after seven gallons of water were discharged. The well was rested (ceased pumping) for five minutes and pumping resumed. One gallon of clear water was pumped from the well before again going dry.

Monitoring Well 4. The water column in MW-4 was 9.63 feet. The water volume in the casing was 1.7 gallons. Approximately eight gallons of water were bailed from this well on June 19, 2000, before going dry (bailing was started before it was decided to pump the wells). The well was bailed for 35 minutes. On June 20, 2000, less than one gallon of water was pumped before the well went dry.

Monitoring Well 5. The water column in the well was 11.82 feet resulting in a casing volume of two gallons. The well pumped dry after pumping eight gallons. After stopping the pump for five minutes then pumping four gallons of water, the well again pumped dry.

Monitoring Well 6. The well had 7.04 feet of water column and a casing volume of 1.2 gallons. The well pumped dry after 4.5 gallons of water were discharged.

Monitoring Well 7. The water column was 9.16 feet and casing volume was 1.7 gallons. Four gallons of water were pumped from the well before the well went dry.

While the above described pumping does not constitute a pump test, it does give an indication of the aquifer yield. The casing volumes do not include water in storage in the sand pack of the well annulus. Assuming 25% porosity, the volume of water in a 10-foot column of sand pack would be approximately five gallons.
5.0 SUMMARY AND CONCLUSIONS

5.1 SUMMARY

Additional drilling, sampling, and testing requested by the TNRCC have been accomplished. The results have supported conclusions in the SR that contamination is limited to a relative small area south of Building 200 at Monitoring Well 3. The source of contamination has not been proven, but indications are that it did not come from the dry-cleaning establishment previously operating in the northernmost suite of Building 200. It would appear that the most likely source is dumping of organic solvents in the grassy area or the dumpster at the south end of the building.

The groundwater appears to slope approximately 878 degrees E at 0.35 % grade, provided the water levels were essentially true static levels. Pumping and bailing performed on the wells indicates that the perched aquifer has limited capacity.

APPENDIX A
LOGS OF BORINGS
Monitoring Well Installation Report

Well: GP-A1
Location: Camarillo Shpping Cen
Date: June 12, 2000
Purpose: Total Support
Completion: Grout

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Depth</th>
<th>Screen</th>
<th>Grout</th>
<th>Total Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 m</td>
<td>1.0 m</td>
<td></td>
<td></td>
<td>9.0 m</td>
</tr>
</tbody>
</table>

Lithology/Remarks:

- **100%**
 - Articulate Concrete
 - Clay, gray, some light color, high water

Remarks:

- No split-sample
- No recovery

Well: GP-A2
Location: Camarillo Shopping Cen
Date: June 12, 2000
Purpose: Total Support
Completion: Grout

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Depth</th>
<th>Screen</th>
<th>Grout</th>
<th>Total Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 m</td>
<td>1.0 m</td>
<td></td>
<td></td>
<td>9.0 m</td>
</tr>
</tbody>
</table>

Lithology/Remarks:

- **100%**
 - Articulate Pavement
 - Clay, black, stiff
 - Clay, brown, stiff

Remarks:

- No split-sample
- No recovery
Monitoring Well Installation Report

Well Details
- **Well Name:** OCS
- **Location:** Camelot Shipping CEN
- **Date:** June 17, 2009
- **Purpose:** Total Support
- **Well ID:** GPC
- **Geological:** GEOLOGIC

Screen Information

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Diameter</th>
<th>Length</th>
<th>Material</th>
<th>Screen Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0'</td>
<td>10.0'</td>
<td>0.0'</td>
<td>GEOLOGIC</td>
<td>10.0'</td>
</tr>
</tbody>
</table>

Lithology/Remarks

- **Asphalt Pavement**
- **Clay, Black Silt**

Remark

- **Sample Collection:**
 - Split Barrel Sample
 - No Recovery
 - Water Sample
 - Soil Sample

Well Completion Details

- **Completion Date:**
- **Completion Method:**
- **Special Considerations:**

Diagram

- **Well Path:**
- **Screen Locations:**
 - 10.0' to 20.0'

Additional Remarks

- **Clay, Cream, Mica, Silt, Scattered Concretions**
Monitoring Well Installation Report

Location: Laramie Shoshoni Cn

Date: June 1, 2000

Well Number: HA-6

Well Name: M68

Drilling Method: Overcoring

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Interval</th>
<th>Screen</th>
<th>Slot Size</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Lithology/Remarks:
- **Concrete Floor**
- **Clay, Black**
- **Clay, Brown**

Notes:
- No recovery

Ref.: M68

Remarks:
- Indicated that sample was submitted to the laboratory for analysis.

Splits-Sample Sample:
- No recovery

Remarks:
- Indicated that sample was submitted to the laboratory for analysis.

Water Level:
- Date: 0
- Elev.: 84

Depth to Water:
- Date: 0
- Elev.: 84

Total Sample:
- Date: 0
- Elev.: 84

Remarks:
- M68

Drilling Method:
- Overcoring
APPENDIX B
LABORATORY ANALYTICAL DATA
AND
CUSTODY FORMS

Chain of Custody Record

Client:

Address:

Sample Information:

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Container Identification</th>
<th>Container Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP-B4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-B3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-B2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-A7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-A5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-1 (B-10^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-2 (B-10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-5 (B-10^6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-6 (B-10^7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepared by:

Date:

Acknowledged by:

Date:

A separate Chain of Custody record is completed for each day of sample collection.
Analytical Report

Date of Report: 07/11/2000
COLLECTED BY: Client
DATE COLLECTED: 06/19/2000
TIME: 10:10
REVIEWED: 07/14/2000
TALEM LAB ID: 00-0009942
Sample Matrix: Soil

Description	Client Account No.: 218
Sample Location:	4500 E. Bannock Street,
	Ft. Worth, TX 76107

Analytical Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration (mg/L)</th>
<th>Unit</th>
<th>DET/EPA Method</th>
<th>EQ/DEQ</th>
<th>A/I Date</th>
<th>Test QC Ref</th>
<th>Test QC Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, Total</td>
<td>0.005</td>
<td>mg/L</td>
<td>SW4010D</td>
<td>3.5</td>
<td>25</td>
<td>08/28</td>
<td>46616</td>
</tr>
<tr>
<td>Lead, Total</td>
<td>0.012</td>
<td>mg/L</td>
<td>SW4010H</td>
<td>7</td>
<td>16</td>
<td>08/28</td>
<td>46616</td>
</tr>
<tr>
<td>Organic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Petroleum Hydrocarbons: C10-C28</td>
<td>0.27</td>
<td>mg/L</td>
<td>TS1005</td>
<td>27</td>
<td>50</td>
<td>08/21</td>
<td>46600</td>
</tr>
<tr>
<td>Total Petroleum Hydrocarbons: C5-C10</td>
<td>0.03</td>
<td>mg/L</td>
<td>TS1005</td>
<td>33</td>
<td>50</td>
<td>08/21</td>
<td>46600</td>
</tr>
<tr>
<td>Total Petroleum Hydrocarbons: C6-C28</td>
<td>0.05</td>
<td>mg/L</td>
<td>TS1005</td>
<td>60</td>
<td>50</td>
<td>08/21</td>
<td>46600</td>
</tr>
</tbody>
</table>

Note: The results meet the regulatory limits for the respective parameters.
ANALYTICAL REPORT

Date of Report: 07/11/2000
TALEM REF No: 00-009934
TALEM LAB No: 00-009934
Sample Matrix: Soil

ORGANIC METALS

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result Unit</th>
<th>Site</th>
<th>Test Procedure</th>
<th>HPLC</th>
<th>PQL</th>
<th>A/I Date</th>
<th>QC Ref Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>0.35 mg/L</td>
<td>10</td>
<td>SN00100</td>
<td>17</td>
<td>107</td>
<td>06/28</td>
<td>46416</td>
</tr>
<tr>
<td>Cd</td>
<td>1 mg/L</td>
<td>10</td>
<td>SN00100</td>
<td>17</td>
<td>107</td>
<td>06/28</td>
<td>46416</td>
</tr>
<tr>
<td>Cr</td>
<td>20 mg/L</td>
<td>10</td>
<td>SN00100</td>
<td>7</td>
<td>107</td>
<td>06/28</td>
<td>46416</td>
</tr>
<tr>
<td>Hg</td>
<td>0.5 mg/L</td>
<td>1</td>
<td>TX1005</td>
<td>27</td>
<td>50</td>
<td>06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Pb</td>
<td>3 mg/L</td>
<td>1</td>
<td>TX1005</td>
<td>27</td>
<td>50</td>
<td>06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Zn</td>
<td>30 mg/L</td>
<td>1</td>
<td>TX1005</td>
<td>27</td>
<td>50</td>
<td>06/21</td>
<td>46400</td>
</tr>
</tbody>
</table>

Page 5 of 19
Analytical Report

Date of Report: 07/11/2000
REVISION: 07/14/2000**
TALEM SRF No.: 42167
Date Collected: 04/19/2000,** Time:** 08:50
Collected By: Client
Date Received: 04/20/2000
TALEM Project No: 00064612
TALEM Lab ID No: 00-000933
Sample Matrix: Soil

Client Account No: 216
Client Project No: Proe: CP0005/Camelot Shopping Center
Sample Description: GP-B2

Organic Analysis

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>DL</th>
<th>QR</th>
<th>A/I Date</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>mg/Kg</td>
<td>10</td>
<td>SN0110</td>
<td>3.5</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>mg/Kg</td>
<td>10</td>
<td>SN0110</td>
<td>1.7</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>mg/Kg</td>
<td>10</td>
<td>SN0110</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Inorganic Analysis

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>DL</th>
<th>QR</th>
<th>A/I Date</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>mg/Kg</td>
<td>10</td>
<td>SN0110</td>
<td>3.5</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>mg/Kg</td>
<td>10</td>
<td>SN0110</td>
<td>1.7</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>mg/Kg</td>
<td>10</td>
<td>SN0110</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Organic Analysis

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>DL</th>
<th>QR</th>
<th>A/I Date</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><27</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td><33</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td><50</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Inorganic Analysis

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>DL</th>
<th>QR</th>
<th>A/I Date</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><27</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td><33</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td><50</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Organic Analysis

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>DL</th>
<th>QR</th>
<th>A/I Date</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><27</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td><33</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td><50</td>
<td>mg/Kg</td>
<td>1</td>
<td>TX0105</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
TALEM, INC.

ANALYTICAL REPORT

TALEM ENVIRONMENTAL SERVICES
501 SOUTH BROADWAY AVENUE
FORT WORTH, TX 76104
TEL: (817) 335-1186
FAX: (817) 335-9630

Attention: Mel Green
Ching Patel and Associates, Inc.
4100 Armon Carter Blvd.
Fort Worth TX 76115

Sample Matrix: Soil

Date of Report: 07/11/2000
Date Collected: 06/19/2000 Time: 08:30
Sample ID: 000004412
Sample Matrix: Soil

Client Account No.: 216
Client Project No.: 0F-00065/Camelot Shopping Center

INORGANIC METALS

<table>
<thead>
<tr>
<th>Element</th>
<th>Result</th>
<th>Unit</th>
<th>PPM</th>
<th>Test Procedure</th>
<th>MRL</th>
<th>PQL</th>
<th>A/I Date</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td><0.5</td>
<td>mg/Kg</td>
<td>10</td>
<td>SM40100</td>
<td>3.5</td>
<td>25</td>
<td>DAR 06/28</td>
<td>46616</td>
</tr>
<tr>
<td>Cu</td>
<td>24</td>
<td>mg/Kg</td>
<td>10</td>
<td>SM40100</td>
<td>1.7</td>
<td>10</td>
<td>DAR 06/28</td>
<td>46616</td>
</tr>
<tr>
<td>Zn</td>
<td>21</td>
<td>mg/Kg</td>
<td>10</td>
<td>SM40100</td>
<td>7</td>
<td>10</td>
<td>DAR 06/28</td>
<td>46616</td>
</tr>
</tbody>
</table>

ORGANIC

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result</th>
<th>Unit</th>
<th>PPM</th>
<th>Test Procedure</th>
<th>MRL</th>
<th>PQL</th>
<th>A/I Date</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Pet Hydrocarbons, PCDD-PCB</td>
<td><27</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>27</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Total Pet Hydrocarbons, CH C20</td>
<td><33</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>33</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Total Pet Hydrocarbons, CH C20</td>
<td><30</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>30</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Total Pet Hydrocarbons, CH C20</td>
<td><27</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>27</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Total Pet Hydrocarbons, CH C20</td>
<td><33</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>33</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Total Pet Hydrocarbons, CH C20</td>
<td><30</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>30</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Total Pet Hydrocarbons, CH C20</td>
<td><27</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>27</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Total Pet Hydrocarbons, CH C20</td>
<td><33</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>33</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
<tr>
<td>Total Pet Hydrocarbons, CH C20</td>
<td><30</td>
<td>mg/Kg</td>
<td>1</td>
<td>TIS1005</td>
<td>30</td>
<td>50</td>
<td>JDA 06/21</td>
<td>46400</td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Client Account No: 216
Client Project No: Prog. CTP0005/Canalot Shopping Center
Sample Description: 08-C5
Sample Matrix: Soil
Date of Report: 07/11/2000
TALEM Env. Services: TALEM ENVIRONMENTAL SERVICES
Address: 305 WEST MEYER AVENUE
City: FORT WORTH, TX 76104
TEL: 817-335-9900
FAX: 817-335-9930
Attention: Nel Green
**Chiang, Patel and Associates, Inc.*
Sample Lab ID No: 00-0069993
Sample Date: 06/26/2000

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>Report No.</th>
<th>Date</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.5</td>
<td>mg/kg</td>
<td>SW0110B</td>
<td>06/26/2000</td>
<td>66636</td>
</tr>
<tr>
<td>24</td>
<td>mg/kg</td>
<td>SW0110B</td>
<td>06/26/2000</td>
<td>66656</td>
</tr>
<tr>
<td>19</td>
<td>mg/kg</td>
<td>SW0110B</td>
<td>06/26/2000</td>
<td>66806</td>
</tr>
</tbody>
</table>

ORGANIC COMPOUNDS

<table>
<thead>
<tr>
<th>Compound</th>
<th>C7H5NO5</th>
<th>C7H5NO4</th>
<th>C6H5NO3</th>
<th>C6H5NO2</th>
<th>C6H5NO</th>
<th>C5H5NO2</th>
<th>C4H5NO</th>
<th>C3H5NO</th>
<th>C2H5NO</th>
<th>C3H5NO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>mg/kg</td>
</tr>
<tr>
<td>0.50</td>
<td>mg/kg</td>
</tr>
</tbody>
</table>

FUTURE WORK

- Review all data for consistency and accuracy.
- Cross-reference results with historical data.
- Ensure all samples are properly labeled and stored.
- Verify all equipment calibration and maintenance records.

Page: 6 of 19
Analytical Report

Date of Report: 07/11/2000

TALEM Sample No.: 44167

Client: Collected By Client

Sample Matrix: Soil

Trichloroethene

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>Qty</th>
<th>Method</th>
<th>MDL</th>
<th>PQL</th>
<th>A/I</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>mg/kg</td>
<td>1</td>
<td>SW8260B</td>
<td>5</td>
<td>.5</td>
<td>WAF</td>
<td>06/28</td>
<td>44335</td>
</tr>
</tbody>
</table>

Trichloroethene

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>Qty</th>
<th>Method</th>
<th>MDL</th>
<th>PQL</th>
<th>A/I</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>mg/kg</td>
<td>1</td>
<td>SW8260B</td>
<td>5</td>
<td>.5</td>
<td>WAF</td>
<td>06/28</td>
<td>44335</td>
</tr>
</tbody>
</table>

Vinyl Chloride

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>Qty</th>
<th>Method</th>
<th>MDL</th>
<th>PQL</th>
<th>A/I</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>mg/kg</td>
<td>1</td>
<td>SW8260B</td>
<td>5</td>
<td>.5</td>
<td>WAF</td>
<td>06/28</td>
<td>44335</td>
</tr>
</tbody>
</table>

Nylene, meta & para

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>Qty</th>
<th>Method</th>
<th>MDL</th>
<th>PQL</th>
<th>A/I</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>mg/kg</td>
<td>1</td>
<td>SW8260B</td>
<td>5</td>
<td>.5</td>
<td>WAF</td>
<td>06/28</td>
<td>44335</td>
</tr>
</tbody>
</table>

Nylene, ortho

<table>
<thead>
<tr>
<th>Result</th>
<th>Unit</th>
<th>Qty</th>
<th>Method</th>
<th>MDL</th>
<th>PQL</th>
<th>A/I</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>mg/kg</td>
<td>1</td>
<td>SW8260B</td>
<td>5</td>
<td>.5</td>
<td>WAF</td>
<td>06/28</td>
<td>44335</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>mg/L</td>
<td>1</td>
<td>SW260B</td>
<td>5</td>
<td>5</td>
<td>06/28/00</td>
<td>44435</td>
<td></td>
</tr>
<tr>
<td>Trifluorobenzene</td>
<td>µg/m³</td>
<td>1</td>
<td>SW260B</td>
<td>5</td>
<td>5</td>
<td>06/28/00</td>
<td>44435</td>
<td></td>
</tr>
<tr>
<td>Vinyln Acetate</td>
<td>µg/m³</td>
<td>1</td>
<td>SW260B</td>
<td>5</td>
<td>5</td>
<td>06/28/00</td>
<td>44435</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>µg/m³</td>
<td>1</td>
<td>SW260B</td>
<td>5</td>
<td>5</td>
<td>06/28/00</td>
<td>44435</td>
<td></td>
</tr>
<tr>
<td>Xylene, met & para</td>
<td>µg/m³</td>
<td>1</td>
<td>SW260B</td>
<td>5</td>
<td>5</td>
<td>06/28/00</td>
<td>44435</td>
<td></td>
</tr>
<tr>
<td>Xylene, ortho</td>
<td>µg/m³</td>
<td>1</td>
<td>SW260B</td>
<td>5</td>
<td>5</td>
<td>06/28/00</td>
<td>44435</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Date of Report: 07/11/2000

Report No: 48167

Date Collected: 04/18/2000

Time: 12:40

Client Account No: 216

Sample Description: RA-6 (K-19)

Result	Unit	P/Q	A/I Date	Number
<0.05 | mg/kg | 1 | SME24B | 5 | 5

Date of Report: 07/11/2000

Report No: 49107

Date Collected: 04/19/2000

Time: 13:35

Client Account No: 216

Sample Description: RA-6 (K-19)

Result	Unit	P/Q	A/I Date	Number
<0.05 | mg/kg | 1 | SME24B | 5 | 5
Analytical Report

Date of Report: 07/17/2000
****Prepared by:** 07/14/2000
TALEM REP No: 66147
Date Collected: 06/19/2000
Time: 12:05
Collected By: Client
Received By: Client
TALEM Project No: 00064012
TALEM Lab ID No: 00-00099417
Sample Matrix: Soil

<table>
<thead>
<tr>
<th>Trichloroethylene</th>
<th>Unit</th>
<th>6 1o</th>
<th>Procedure</th>
<th>Method</th>
<th>PQL</th>
<th>A/I</th>
<th>Date</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>mg/kg</td>
<td>1</td>
<td>SW260B</td>
<td>0.5</td>
<td>0.5</td>
<td>06/28</td>
<td>46635</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>Unit</td>
<td>6 1o</td>
<td>Procedure</td>
<td>Method</td>
<td>PQL</td>
<td>A/I</td>
<td>Date</td>
<td>Number</td>
</tr>
<tr>
<td>0.05</td>
<td>mg/kg</td>
<td>1</td>
<td>SW260B</td>
<td>0.5</td>
<td>0.5</td>
<td>06/28</td>
<td>46635</td>
<td></td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>Unit</td>
<td>6 1o</td>
<td>Procedure</td>
<td>Method</td>
<td>PQL</td>
<td>A/I</td>
<td>Date</td>
<td>Number</td>
</tr>
<tr>
<td>0.05</td>
<td>mg/kg</td>
<td>1</td>
<td>SW260B</td>
<td>0.5</td>
<td>0.5</td>
<td>06/28</td>
<td>46635</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>Unit</td>
<td>6 1o</td>
<td>Procedure</td>
<td>Method</td>
<td>PQL</td>
<td>A/I</td>
<td>Date</td>
<td>Number</td>
</tr>
<tr>
<td>0.05</td>
<td>mg/kg</td>
<td>1</td>
<td>SW260B</td>
<td>0.5</td>
<td>0.5</td>
<td>06/28</td>
<td>46635</td>
<td></td>
</tr>
<tr>
<td>Xylene, meta & para</td>
<td>Unit</td>
<td>6 1o</td>
<td>Procedure</td>
<td>Method</td>
<td>PQL</td>
<td>A/I</td>
<td>Date</td>
<td>Number</td>
</tr>
<tr>
<td>0.05</td>
<td>mg/kg</td>
<td>1</td>
<td>SW260B</td>
<td>0.5</td>
<td>0.5</td>
<td>06/28</td>
<td>46635</td>
<td></td>
</tr>
</tbody>
</table>

The following is a summary of the basic data evaluation for all QC data associated with the project number referenced above. Accuracy and precision data are available on the attached QC data report.

Quality Control Comments:

4700 ppm Postdigested (bench) spikes were used for lead results.

*) The letter and reports are for the exclusive use of the clients to whom addressed and shall not be reproduced except in full and with the approval of TALEM Inc. The TALEM name or logo may only be used with prior written approval. Our letter and report apply only to the sample or samples tested and are not necessarily indicative of the qualities of any other samples.

Distribution of Report

Sincerely and Approved By:

[Signature]

Bob Garrett
VP Analytical Services
SPIKE ACCURACY DATA

<table>
<thead>
<tr>
<th>Element Test Name</th>
<th>N</th>
<th>MG</th>
<th>MGd</th>
<th>WDG</th>
<th>HD</th>
<th>MS</th>
<th>PI</th>
<th>PI</th>
<th>Limit</th>
<th>PI</th>
<th>TALEM</th>
<th>Def</th>
<th>Rfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic</td>
<td></td>
</tr>
<tr>
<td>46618 Arsenic, Total</td>
<td>10.4</td>
<td>90</td>
<td>11.2</td>
<td>96</td>
<td>11.4</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46619 Chromium, Total</td>
<td>1.63</td>
<td>85</td>
<td>11.6</td>
<td>87</td>
<td>11.4</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46620 Lead, Total</td>
<td>1.21</td>
<td>90</td>
<td>12.5</td>
<td>99</td>
<td>11.4</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46709 Lead, Total</td>
<td>6.96</td>
<td>78</td>
<td>24.2</td>
<td>78</td>
<td>24.2</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td></td>
</tr>
<tr>
<td>46420 Tot Pct Hydrocarbons, <C10-C28</td>
<td>55.4</td>
<td>21</td>
<td>70.5</td>
<td>29</td>
<td>70</td>
<td>75</td>
<td>150</td>
<td>*0009080</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Tot Pct Hydrocarbons, C6-C10</td>
<td>37.5</td>
<td>56</td>
<td>76</td>
<td>26</td>
<td>70</td>
<td>75</td>
<td>150</td>
<td>*0009080</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Toluene</td>
<td>2.14</td>
<td>3</td>
<td>5.2</td>
<td>8</td>
<td>5.1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Xylenes</td>
<td>2.59</td>
<td>5</td>
<td>5.4</td>
<td>8</td>
<td>5.3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Chlorobenzene</td>
<td>0.93</td>
<td>99</td>
<td>5.4</td>
<td>11</td>
<td>5.1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Toluene</td>
<td>0.39</td>
<td>80</td>
<td>0.4</td>
<td>90</td>
<td>0.5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS ACCURACY DATA</td>
<td></td>
</tr>
<tr>
<td>Inorganic</td>
<td></td>
</tr>
<tr>
<td>46618 Arsenic, Total</td>
<td>12.5</td>
<td>12.5</td>
<td>16.0</td>
<td>85</td>
<td>115</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46619 Chromium, Total</td>
<td>12.5</td>
<td>12.5</td>
<td>16.0</td>
<td>85</td>
<td>115</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46620 Lead, Total</td>
<td>12.5</td>
<td>12.5</td>
<td>16.0</td>
<td>85</td>
<td>115</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td></td>
</tr>
<tr>
<td>46420 Tot Pct Hydrocarbons, <C10-C28</td>
<td>250</td>
<td>260</td>
<td>316</td>
<td>80</td>
<td>115</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Tot Pct Hydrocarbons, C6-C10</td>
<td>264</td>
<td>280</td>
<td>316</td>
<td>80</td>
<td>115</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Toluene</td>
<td>5</td>
<td>5</td>
<td>7.9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Xylenes</td>
<td>5</td>
<td>5</td>
<td>7.9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Chlorobenzene</td>
<td>5</td>
<td>5</td>
<td>7.9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRECISION DATA</td>
<td></td>
</tr>
<tr>
<td>Inorganic</td>
<td></td>
</tr>
<tr>
<td>46618 Arsenic, Total</td>
<td>10.8</td>
<td>11</td>
<td>11.6</td>
<td>11</td>
<td>11.4</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46619 Chromium, Total</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
<td>N/A</td>
<td>11.4</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46620 Lead, Total</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>N/A</td>
<td>12.5</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46709 Lead, Total</td>
<td>25.4</td>
<td>26.2</td>
<td>26.2</td>
<td>N/A</td>
<td>0</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td></td>
</tr>
<tr>
<td>46420 Tot Pct Hydrocarbons, <C10-C28</td>
<td>93</td>
<td>70</td>
<td>12.9</td>
<td>12.9</td>
<td>12.9</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Tot Pct Hydrocarbons, C6-C10</td>
<td>92</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>75</td>
<td>75</td>
<td>125</td>
<td>0009934</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Toluene</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Xylenes</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Chlorobenzene</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Toluene</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHOD BLANK DATA</td>
<td></td>
</tr>
<tr>
<td>Inorganic</td>
<td></td>
</tr>
<tr>
<td>46618 Arsenic, Total</td>
<td>0.086</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0009900</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46619 Chromium, Total</td>
<td>0.066</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0009900</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46620 Lead, Total</td>
<td>-0.01</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0009900</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46709 Lead, Total</td>
<td>-0.01</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0009900</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td></td>
</tr>
<tr>
<td>46420 Tot Pct Hydrocarbons, <C10-C28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0009900</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Tot Pct Hydrocarbons, C6-C10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0009900</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Toluene</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Xylenes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Chlorobenzene</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46420 Toluene</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0010034</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- All values are in mg/kg unless specified.
-Units are mg/kg for the main data table and mg for the method blank data.
- Spike accuracy data is provided for the inorganic elements and selected organic compounds.
- Precision data shows the range of values from the replicate analyses.
- Method blank data indicates the levels of detected contaminants.
Surrogate Accuracy Data

1,2-Dichloroethane-d4

<table>
<thead>
<tr>
<th>Surrogate Type</th>
<th>True Value</th>
<th>Measured Value</th>
<th>LL</th>
<th>UL</th>
<th>% Recovery</th>
<th>Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDI</td>
<td>2.69</td>
<td>2.69</td>
<td>70</td>
<td>125</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>MEI</td>
<td>2.82</td>
<td>2.82</td>
<td>70</td>
<td>125</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>LIX</td>
<td>3.13</td>
<td>3.13</td>
<td>70</td>
<td>125</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Blank</td>
<td>3.69</td>
<td>3.69</td>
<td>70</td>
<td>125</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

4- Bromofluorobenzene

<table>
<thead>
<tr>
<th>Surrogate Type</th>
<th>True Value</th>
<th>Measured Value</th>
<th>LL</th>
<th>UL</th>
<th>% Recovery</th>
<th>Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDI</td>
<td>1.93</td>
<td>1.93</td>
<td>70</td>
<td>125</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>MEI</td>
<td>2.45</td>
<td>2.45</td>
<td>70</td>
<td>125</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>LIX</td>
<td>3.69</td>
<td>3.69</td>
<td>70</td>
<td>125</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Blank</td>
<td>4.17</td>
<td>4.17</td>
<td>70</td>
<td>125</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Sample Receipt Form

Date and Time Received: 6/20/00 7:01 PM

- **Laboratory:** TALON Laboratory
- **Address:** 306 Broadway, Ft. Worth, TX 76104
- **Phone:** 817-335-1186
- **Sample Description:**
 - **Lab ID:** N/A
 - **Matrix:** N/A
 - **Sample Description:** N/A
- **Container:** N/A
- **Type:** N/A
- **Apparent Vol:** N/A
- **Init. Pm:** N/A
- **Final Pm:** N/A
- **Pres Code:** N/A
- **Filtration:** N/A

Analytes

- **TX1005**
 - **Amount:** 8 oz
 - **Unit:** g
 - **Pres Code:** N/A
 - **Filtration:** N/A

- **TX1005**
 - **Amount:** 8 oz
 - **Unit:** g
 - **Pres Code:** N/A
 - **Filtration:** N/A

- **TX1005**
 - **Amount:** 8 oz
 - **Unit:** g
 - **Pres Code:** N/A
 - **Filtration:** N/A

Remarks

- **Date and Time Received:** 6/20/00 7:01 PM
- **Temp:** 72.5°F
- **Humidity:** 45%
- **Light:** Yes

Audited By

- **Date:** 6/20/00
- **Time:** 7:01 PM
- **Temp:** 72.5°F
- **Humidity:** 45%
- **Light:** Yes
- **Audited By:** TIE
<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Matrix</th>
<th>Sample Description</th>
<th>Container</th>
<th>Ct Type</th>
<th>Apparent Val</th>
<th>Init pH</th>
<th>Final pH</th>
<th>Pres Code</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9935</td>
<td>Si</td>
<td>GP-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analysts:</td>
<td>As, Cr, Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analytical:</td>
<td>TK1005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9929</td>
<td>Si</td>
<td>GP-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analysts:</td>
<td>As, Cr, Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analytical:</td>
<td>TK1005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9940</td>
<td>Si</td>
<td>GP-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analysts:</td>
<td>As, Cr, Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analytical:</td>
<td>TK1005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9941</td>
<td>Si</td>
<td>GP-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analysts:</td>
<td>As, Cr, Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analytical:</td>
<td>TK1005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9940</td>
<td>Si</td>
<td>GP-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analysts:</td>
<td>As, Cr, Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analytical:</td>
<td>TK1005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TALEM, INC.
Environmental Services

CHAIN-OF-CUSTODY RECORD

Sample No.: 057-01

Date of Collection: 09/26/97

 Analyst: SW2608

Matrix: SW

Sample Description: 0.5 kg

Apparent Vol: 8 oz

Final pH: N/A

Pres Code: N/A

Filtration: N/A

Received by: TALM

Preserved by: TALM

Spill Location: 0

Sample Tracking No.: 000506

Project No.: 001

Sample Media: Soil

Sample Type: Other

Sample Totals: 0

Sample Identification: 0

Sample Notes: 0

Sample Condition: 0

Sample Contents: 0

Sample Location: 0

Sample Collection: 0

Sample Date of Collection: 09/26/97

Sample Collection Time: 0

Sample Received by: TALM

Sample Preserved by: TALM

Sample Spill Location: 0

Sample Spill Date: 0

Sample Spill Time: 0

Sample Spill Received by: TALM

Sample Spill Preserved by: TALM

Sample Spill Spill Location: 0

Sample Spill Spill Date: 0

Sample Spill Spill Time: 0

Sample Spill Spill Received by: TALM

Sample Spill Spill Preserved by: TALM

Matrix: SW

Container: Glass

Preserv: N/A

WA = Water

Gv = Ground Water

Dw = Drinking Water

Gv = Other (Specify)

Dw = Other (Specify)

Wl = Sludge

Dw = Sludge

Materials: 0

Preserve: 0

Sample No.: 000506

Sample Date: 09/26/97

Sample Time: 12:00

Sample Received by: TALM

Sample Preserved by: TALM

Sample Spill Location: 0

Sample Spill Date: 0

Sample Spill Time: 0

Sample Spill Received by: TALM

Sample Spill Preserved by: TALM

Sample Spill Spill Location: 0

Sample Spill Spill Date: 0

Sample Spill Spill Time: 0

Sample Spill Spill Received by: TALM

Sample Spill Spill Preserved by: TALM

* A separate Chain of Custody must be completed for each day of sample collection.
TALEM, INC.

TALEM ENVIRONMENTAL SERVICES

50 WEST BROCADE AVENUE

PORT WASHINGTON, WI 53074

TEL: (262) 339-9890

FAX: (262) 339-9895

ANALYTICAL REPORT

Date of Report: 07/11/2000

TALEM Lab No.: 44234

Sample Collection Date: 06/22/2000

Sample Mat.: Water

Client Account No.: 216

Client Project No.: CUP006/Camelot Shopping Center

Sample Description: WW-1

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
<th>Unit</th>
<th>DCM Test</th>
<th>Test Method</th>
<th>LPQ</th>
<th>Test Date</th>
<th>QC Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,2,2-Trichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>2-Chloroethyl Vinyl Ether</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>2-Methanol (Methyl ethyl ketone)</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Bromomethyl chloride</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>2-Chloroethyl Vinyl Ether</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>2-Methanol (Methyl ethyl ketone)</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL REPORT

Date of Report: 07/11/2000

TALEM Lab No.: 44234

Sample Collection Date: 06/22/2000

Sample Mat.: Water

Client Account No.: 216

Client Project No.: CUP006/Camelot Shopping Center

Sample Description: WW-1

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
<th>Unit</th>
<th>DCM Test</th>
<th>Test Method</th>
<th>LPQ</th>
<th>Test Date</th>
<th>QC Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,2,2-Trichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>2-Chloroethyl Vinyl Ether</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>2-Methanol (Methyl ethyl ketone)</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Bromomethyl chloride</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>2-Chloroethyl Vinyl Ether</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>2-Methanol (Methyl ethyl ketone)</td>
<td>0.5</td>
<td>mg/L</td>
<td>Merck</td>
<td>UV</td>
<td></td>
<td>12/24/98</td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Result Unit</td>
<td>Limit Test Procedure</td>
<td>LOQ</td>
<td>Test A/I Date</td>
<td>Test Q/C Ref</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><0.0</td>
<td>ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><0.0</td>
<td>ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes (ortho & para)</td>
<td><0.0</td>
<td>ug/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hydrocarbons, GC/MS-CHEM</td>
<td><0.0</td>
<td>ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hydrocarbons, GC/MS-C8</td>
<td><0.0</td>
<td>ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Substance</td>
<td>Result</td>
<td>Unit</td>
<td>Dilu. Text Procedure</td>
<td>Log</td>
<td>All Date Produce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------</td>
<td>----------------------</td>
<td>-----</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>>0.4</td>
<td>ug/L</td>
<td>EW27 0057</td>
<td>4.6</td>
<td>07/27/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td><0.4</td>
<td>ug/L</td>
<td>EW27 0057</td>
<td>4.4</td>
<td>07/27/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorobenzaldehyde</td>
<td><0.4</td>
<td>ug/L</td>
<td>EW27 0057</td>
<td>4.4</td>
<td>07/27/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCM</td>
<td><5.0</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>5.0</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5.0</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>5.0</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodiphenylchloroethane</td>
<td><5.0</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>5.0</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5.0</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>5.0</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis-Chloroform</td>
<td><5.0</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>5.0</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0</td>
<td>wg/L</td>
<td>SW27 0057</td>
<td>5.0</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane (methyl Bromide)</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform (methyl Chloride)</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform (methyl Chloride) (From PCP)</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dichloroethane (Dichloromethane)</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexabromocyanurate</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Ethyl Ketene (2-Butanone)</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahydrophthlan (Perhydroxybenzene)</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolane</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trains-3,4-dichloropropene</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trains-3,4-dichloro benzene</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethylpentanol</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td><10</td>
<td>ug/L</td>
<td>SW27 0057</td>
<td>10</td>
<td>08/11/2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Date of Report: 07/11/2000

TALEMENVIRONMENTAL SERVICES
50 WEST BROOKLYN AVENUE
FORT WORTH, TX 76116

TALN ENVIRONMENTAL SERVICES
50 WEST BROOKLYN AVENUE
FORT WORTH, TX 76116

Sample Description: Water

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
<th>Unit</th>
<th>Test</th>
<th>Test Date</th>
<th>QC Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>158</td>
<td>ug/L</td>
<td>1</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>1,2,3-trichloropropene</td>
<td>17</td>
<td>ug/L</td>
<td>1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1,2,4-trichlorobenzene</td>
<td>41</td>
<td>ug/L</td>
<td>1</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>1,2-dichloroethane</td>
<td>11</td>
<td>ug/L</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1,2-dichlorobenzene</td>
<td>36</td>
<td>ug/L</td>
<td>1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>1,2-dichloroethylene</td>
<td>20</td>
<td>ug/L</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzene</td>
<td>10</td>
<td>ug/L</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>3</td>
<td>ug/L</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>6</td>
<td>ug/L</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>1</td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.05</td>
<td>ug/L</td>
<td>1</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.04</td>
<td>ug/L</td>
<td>1</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.02</td>
<td>ug/L</td>
<td>1</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.01</td>
<td>ug/L</td>
<td>1</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.005</td>
<td>ug/L</td>
<td>1</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.002</td>
<td>ug/L</td>
<td>1</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.001</td>
<td>ug/L</td>
<td>1</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.0005</td>
<td>ug/L</td>
<td>1</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.0002</td>
<td>ug/L</td>
<td>1</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.0001</td>
<td>ug/L</td>
<td>1</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.00005</td>
<td>ug/L</td>
<td>1</td>
<td>0.00005</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.00002</td>
<td>ug/L</td>
<td>1</td>
<td>0.00002</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.00001</td>
<td>ug/L</td>
<td>1</td>
<td>0.00001</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.000005</td>
<td>ug/L</td>
<td>1</td>
<td>0.000005</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.000002</td>
<td>ug/L</td>
<td>1</td>
<td>0.000002</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.000001</td>
<td>ug/L</td>
<td>1</td>
<td>0.000001</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.0000005</td>
<td>ug/L</td>
<td>1</td>
<td>0.0000005</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.0000002</td>
<td>ug/L</td>
<td>1</td>
<td>0.0000002</td>
<td></td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>0.0000001</td>
<td>ug/L</td>
<td>1</td>
<td>0.0000001</td>
<td></td>
</tr>
</tbody>
</table>

Note:

- The report is for the exclusive use of the client and shall not be reproduced or distributed without written permission.
- The report is not necessarily indicative of the quality of the samples.

Signature:

Bob Garrett
VP Analytical Services
<table>
<thead>
<tr>
<th>Substance</th>
<th>Method</th>
<th>Limit</th>
<th>Unit</th>
<th>Result</th>
<th>Date</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>1199208B</td>
<td><0.5 ug/L</td>
<td>1</td>
<td>0.5 g/L</td>
<td>01/02/2000</td>
<td>20103</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>1199208B</td>
<td><0.5 ug/L</td>
<td>1</td>
<td>0.5 g/L</td>
<td>01/02/2000</td>
<td>20103</td>
</tr>
<tr>
<td>Benzene</td>
<td>1199208B</td>
<td><0.5 ug/L</td>
<td>1</td>
<td>0.5 g/L</td>
<td>01/02/2000</td>
<td>20103</td>
</tr>
<tr>
<td>Toluene</td>
<td>1199208B</td>
<td><0.5 ug/L</td>
<td>1</td>
<td>0.5 g/L</td>
<td>01/02/2000</td>
<td>20103</td>
</tr>
<tr>
<td>xylene, mixed</td>
<td>1199208B</td>
<td><0.5 ug/L</td>
<td>1</td>
<td>0.5 g/L</td>
<td>01/02/2000</td>
<td>20103</td>
</tr>
<tr>
<td>xylene, mkt & psi</td>
<td>1199208B</td>
<td><0.5 ug/L</td>
<td>1</td>
<td>0.5 g/L</td>
<td>01/02/2000</td>
<td>20103</td>
</tr>
<tr>
<td>toluene, mixed</td>
<td>1199208B</td>
<td><0.5 ug/L</td>
<td>1</td>
<td>0.5 g/L</td>
<td>01/02/2000</td>
<td>20103</td>
</tr>
<tr>
<td>toluene, mkt</td>
<td>1199208B</td>
<td><0.5 ug/L</td>
<td>1</td>
<td>0.5 g/L</td>
<td>01/02/2000</td>
<td>20103</td>
</tr>
</tbody>
</table>
Analytical Report

Date of Report: 07/11/2000

Client Account No: 216

Client Project No: Proj. CTP005/Canovel Shopping Center

Sample Description: NW-5

<table>
<thead>
<tr>
<th>Compound</th>
<th>Result</th>
<th>Unit</th>
<th>FTIR Procedure</th>
<th>LCQ</th>
<th>A/I Date</th>
<th>QC Ref Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylene, meta & para</td>
<td><3.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Xylene, ortho</td>
<td><3.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Butyl Hydrocarbon, 400-700</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Butyl Hydrocarbon, C4-C6</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Toluene</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Ethylene</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Ethanol</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><5.0 mg/L</td>
<td>1</td>
<td>SWR206B</td>
<td>5.0</td>
<td>WAN 06/27</td>
<td>46629</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>Unit</td>
<td>Method</td>
<td>LOQ</td>
<td>Test</td>
<td>QC Ref</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>< 5.0</td>
<td>mg/L</td>
<td>INNOW</td>
<td>5.0</td>
<td>WM 04/16 44609</td>
<td></td>
</tr>
<tr>
<td>Ethylene Glycol, ortho</td>
<td>< 5.0</td>
<td>mg/L</td>
<td>EINNOW</td>
<td>5.0</td>
<td>WM 04/16 44609</td>
<td></td>
</tr>
<tr>
<td>Ethylene Glycol, meta 6 para</td>
<td>< 5.0</td>
<td>mg/L</td>
<td>EINNOW</td>
<td>5.0</td>
<td>WM 04/16 44609</td>
<td></td>
</tr>
<tr>
<td>Ethylene Glycol, ortho</td>
<td>< 5.0</td>
<td>mg/L</td>
<td>EINNOW</td>
<td>5.0</td>
<td>WM 04/16 44609</td>
<td></td>
</tr>
</tbody>
</table>
ANALYTICAL REPORT

Date of Report: 07/11/2000
Client:
Project No.: 00064677
Lab ID No.: 00-0010124

Sample Matrix: Water

Sample Description: NN-7

Client Account No.: 216

SPIKE ACCURACY DATA

<table>
<thead>
<tr>
<th>Sample Method</th>
<th>Client ID</th>
<th>Project No.</th>
<th>Test Name</th>
<th>Result</th>
<th>Unit</th>
<th>QC Ref</th>
<th>Replicate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.0</td>
<td>ug/l</td>
<td>1</td>
<td>Drilled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.0</td>
<td>ug/l</td>
<td>1</td>
<td>Drilled</td>
<td></td>
</tr>
</tbody>
</table>

LCS ACCURACY DATA

<table>
<thead>
<tr>
<th>Sample Method</th>
<th>Client ID</th>
<th>Project No.</th>
<th>Test Name</th>
<th>Result</th>
<th>Unit</th>
<th>QC Ref</th>
<th>Replicate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.0</td>
<td>ug/l</td>
<td>1</td>
<td>Drilled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.0</td>
<td>ug/l</td>
<td>1</td>
<td>Drilled</td>
<td></td>
</tr>
</tbody>
</table>
Precision Data

<table>
<thead>
<tr>
<th>QC Number</th>
<th>Test Name</th>
<th>LOD</th>
<th>Dup X</th>
<th>Dup Y</th>
<th>Range</th>
<th>RPD</th>
<th>TALEM</th>
<th>Def</th>
<th>Stg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4656</td>
<td>Tot Pet Hydrocarbons, <C10:C18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4659</td>
<td>Tot Pet Hydrocarbons, C6-C7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4660</td>
<td>1,1-Dichloroethene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4661</td>
<td>Methylene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4662</td>
<td>Chlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4663</td>
<td>Toluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4664</td>
<td>Ethylbenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4665</td>
<td>1,2-Dichloroethane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4666</td>
<td>1,3-Dichlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4667</td>
<td>1,4-Dichlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4668</td>
<td>2,4-Dinitrotoluene (W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4669</td>
<td>2,6-Dinitrotoluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4670</td>
<td>2,4-Dinitrotoluene (p-Chloro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4671</td>
<td>2,6-Dinitrotoluene (p-Chloro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4672</td>
<td>Trichloroethene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4673</td>
<td>2,4,5-Trichlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4674</td>
<td>2,4,6-Trichlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4675</td>
<td>4-Chloro-3-methylphenol (p-Chloro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4676</td>
<td>4-Chloro-3-methylphenol (p-Chloro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4677</td>
<td>Anilinophene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4678</td>
<td>Nitrobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4679</td>
<td>n-Nitrosodi-n-propylamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4680</td>
<td>Pentachlorophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4681</td>
<td>Phenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4682</td>
<td>Pyrene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method Blank Data

<table>
<thead>
<tr>
<th>QC Number</th>
<th>Test Name</th>
<th>Method Blank</th>
<th>LOD</th>
<th>Unit</th>
<th>Def</th>
<th>Stg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4656</td>
<td>Tot Pet Hydrocarbons, <C10:C18</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4659</td>
<td>Tot Pet Hydrocarbons, C6-C7</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4660</td>
<td>1,1-Dichloroethene</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4661</td>
<td>Methylene</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4662</td>
<td>Chlorobenzene</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4663</td>
<td>Toluene</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4664</td>
<td>Ethylbenzene</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4665</td>
<td>1,2-Dichloroethane</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4666</td>
<td>1,3-Dichlorobenzene</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4667</td>
<td>1,4-Dichlorobenzene</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4668</td>
<td>2,4-Dinitrotoluene (W)</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4669</td>
<td>2,6-Dinitrotoluene (W)</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4670</td>
<td>2,4-Dinitrotoluene (p-Chloro)</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4671</td>
<td>2,6-Dinitrotoluene (p-Chloro)</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4672</td>
<td>Trichloroethene</td>
<td>< 5</td>
<td>5</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4673</td>
<td>2,4,5-Trichlorobenzene</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4674</td>
<td>2,4,6-Trichlorobenzene</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4675</td>
<td>2,4,6-Trichlorobenzene</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4676</td>
<td>4-Chloro-3-methylphenol (p-Chloro)</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4677</td>
<td>Anilinophene</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4678</td>
<td>Nitrobenzene</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4679</td>
<td>n-Nitrosodi-n-propylamine</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4680</td>
<td>Pentachlorophenol</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4681</td>
<td>Phenol</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4682</td>
<td>Pyrene</td>
<td>< 10</td>
<td>10</td>
<td>μg/l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SURROGATE ACCURACY DATA

GC Number: 46067
Procedure: sw256/b

<table>
<thead>
<tr>
<th>Substance</th>
<th>Surrogate Type</th>
<th>True Val</th>
<th>Measured Value</th>
<th>SLIK</th>
<th>LL</th>
<th>UL</th>
<th>F</th>
<th>Range</th>
<th>LOQ</th>
<th>RPD</th>
<th>UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>MD</td>
<td>50.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
</tr>
<tr>
<td></td>
<td>LG</td>
<td>50.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>BLK</td>
<td>50.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
</tr>
<tr>
<td>4-Br-Methylfluorobenzene</td>
<td>MD</td>
<td>50.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
</tr>
<tr>
<td></td>
<td>LG</td>
<td>50.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>BLK</td>
<td>50.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
</tr>
<tr>
<td>Toluene-d5</td>
<td>MD</td>
<td>50.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
</tr>
<tr>
<td></td>
<td>LG</td>
<td>50.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>BLK</td>
<td>50.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene-d4</td>
<td>MD</td>
<td>50.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
</tr>
<tr>
<td></td>
<td>LG</td>
<td>50.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>BLK</td>
<td>50.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
</tr>
<tr>
<td>2-Chlorophenol-d5</td>
<td>MD</td>
<td>50.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
<td>42.00</td>
</tr>
<tr>
<td></td>
<td>LG</td>
<td>50.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>BLK</td>
<td>50.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
<td>41.00</td>
</tr>
</tbody>
</table>

Report Date: 07/11/00
Project Number: 6006-6777
Conf. Number: 46067
<table>
<thead>
<tr>
<th>Substance</th>
<th>Type</th>
<th>True Val</th>
<th>Measured</th>
<th>LR</th>
<th>LL</th>
<th>UL</th>
<th>Range</th>
<th>LOG</th>
<th>RPD</th>
<th>UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Fluorophenol</td>
<td>MD</td>
<td>25.0</td>
<td>32.9</td>
<td>54</td>
<td>21</td>
<td>100</td>
<td>1.1</td>
<td>8</td>
<td>4.17</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>25.0</td>
<td>34.5</td>
<td>59</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>LQ</td>
<td>25.0</td>
<td>39.8</td>
<td>42</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Blank</td>
<td>25.0</td>
<td>24.1</td>
<td>48</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>MD</td>
<td>25.0</td>
<td>32.9</td>
<td>54</td>
<td>21</td>
<td>100</td>
<td>1.1</td>
<td>8</td>
<td>4.17</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>25.0</td>
<td>34.5</td>
<td>59</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>LQ</td>
<td>25.0</td>
<td>39.8</td>
<td>42</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Blank</td>
<td>25.0</td>
<td>24.1</td>
<td>48</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td>p-Terphenyl-d54</td>
<td>MD</td>
<td>25.0</td>
<td>32.9</td>
<td>54</td>
<td>21</td>
<td>100</td>
<td>1.1</td>
<td>8</td>
<td>4.17</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>25.0</td>
<td>34.5</td>
<td>59</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>LQ</td>
<td>25.0</td>
<td>39.8</td>
<td>42</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Blank</td>
<td>25.0</td>
<td>24.1</td>
<td>48</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td>Phenol</td>
<td>MD</td>
<td>25.0</td>
<td>32.9</td>
<td>54</td>
<td>21</td>
<td>100</td>
<td>1.1</td>
<td>8</td>
<td>4.17</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>25.0</td>
<td>34.5</td>
<td>59</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>LQ</td>
<td>25.0</td>
<td>39.8</td>
<td>42</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Blank</td>
<td>25.0</td>
<td>24.1</td>
<td>48</td>
<td>43</td>
<td>116</td>
<td>1.6</td>
<td>8</td>
<td>4.47</td>
<td>24</td>
</tr>
<tr>
<td>Sample Receipt Form</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Work Order: 005152</td>
<td></td>
</tr>
<tr>
<td>Project Leaders:</td>
<td></td>
</tr>
<tr>
<td>GLC</td>
<td></td>
</tr>
<tr>
<td>Account: 216 Chiang, Patel and Associates</td>
<td></td>
</tr>
<tr>
<td>Address: 1740 Acker Blvd. Suite 104, Fort Worth TX 76155</td>
<td></td>
</tr>
<tr>
<td>Phone: 817-0101 Ext:</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE: 3.5</td>
<td></td>
</tr>
<tr>
<td>Date and Time Received: 6/1/2011 16:10</td>
<td></td>
</tr>
<tr>
<td>Custody Seal on Container: Y</td>
<td>Custody Seal on Container: Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Received By: LAB</td>
<td>Audited By: LAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin Date: 6/1/2011</td>
<td></td>
</tr>
<tr>
<td>End Date: 6/1/2011</td>
<td></td>
</tr>
<tr>
<td>Lab ID:</td>
<td>Matrix Sample Description</td>
<td>Container Type</td>
<td>Apparent Vol</td>
<td>Inst pm</td>
<td>Final pm</td>
<td>Pres Code</td>
<td>Filtration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1025</td>
<td>Wa</td>
<td>Mg</td>
<td>V</td>
<td>30mL</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>180 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>220 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>240 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>280 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>320 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>340 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>360 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>380 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>420 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>440 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>460 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>480 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 mL VOA</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SITE INVESTIGATION REPORT

6.4-ACRE SITE

CAMELOT SHOPPING CENTER
580 West Arapaho Road
Richardson, Texas

Prepared for:
HOPPENSTEIN PROPERTIES, INC.
P.O. Box 796023
Dallas, Texas

Prepared by:
CHIANG, PATEI & YERBY, INC.
CONSULTING ENGINEERS • PLANNERS • PROJECT MANAGERS
FORT WORTH • DALLAS • AUSTIN • HOUSTON • SAN ANTONIO • MCKINNEY, TEXAS • OKLAHOMA CITY, OKLAHOMA

CPS&Y Project No.: CY00005
March 2000

CORRECTION

THIS DOCUMENT HAS BEEN REPHOTOGRAPHED TO ASSURE LEGIBILITY
<table>
<thead>
<tr>
<th>Sample Receipt Form</th>
<th>GLC</th>
<th>Page: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Order: 061342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Leader: GLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts: Cimel Chang, Patel and Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact: Mr. Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address: Cimel Chang, Patel and Associates, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4100 Amon Carter Blvd.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suite 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Worth TX 76103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: 354-0180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custody Seals on Container:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custody Seals on Container Received:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubbles in Zero Head Space Container:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Matrix</th>
<th>Sample Description</th>
<th>Type</th>
<th>Apparent Vol</th>
<th>Initial pH</th>
<th>Final pH</th>
<th>Pres Code</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0147</td>
<td>Wa</td>
<td>Mu-4</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Matrix</th>
<th>Sample Description</th>
<th>Type</th>
<th>Apparent Vol</th>
<th>Initial pH</th>
<th>Final pH</th>
<th>Pres Code</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0148</td>
<td>Wa</td>
<td>Mu-5</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Matrix</th>
<th>Sample Description</th>
<th>Type</th>
<th>Apparent Vol</th>
<th>Initial pH</th>
<th>Final pH</th>
<th>Pres Code</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrices: SL = Soil	Containers: P = Plastic	Preservers: 1 = H2SO4, pH2 6 = NaOH, pH12, Acid if Ready
		2 = HCl, pH2 7 = NaCl, pH2, Zn Acetate
		3 = HNO3, pH2 8 = Pre-Preserved at Lab
		4 = NaNO3
		5 = MesO4/Al2(PK)
		6 = Water, Vial
		7 = Drinking Water
		8 = Other (Specify)
		9 = Other (Specify)
		10 = Filtered in the Field
		11 = Filtered in the Lab
		12 = Alkali
		13 = Glass
		14 = Acetate
		15 = Other (Specify)

| Remarks: | | | | | | | | |

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Matrix</th>
<th>Sample Description</th>
<th>Type</th>
<th>Apparent Vol</th>
<th>Initial pH</th>
<th>Final pH</th>
<th>Pres Code</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0149</td>
<td>Wa</td>
<td>Mu-3</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SITE INVESTIGATION REPORT

6.4-ACRE SITE

CAMELOT SHOPPING CENTER
580 West Arapaho Road
Richardson, Texas

Prepared for:
HOPPENSTEIN PROPERTIES, INC.
P.O. Box 796023
Dallas, Texas

Prepared by:
CHIANG, PATEL & YERBY, INC.
CONSULTING ENGINEERS • PLANNERS • PROJECT MANAGERS
FORT WORTH • DALLAS • AUSTIN • HOUSTON • SAN ANTONIO • MCKINNEY, TEXAS • OKLAHOMA CITY, OKLAHOMA

CP&Y Project No.: CYP0005
March 2000

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page No.</th>
<th>EXECUTIVE SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1.0 INTRODUCTION</td>
</tr>
<tr>
<td>1-1</td>
<td>1.1 General</td>
</tr>
<tr>
<td>1-2</td>
<td>1.2 Location and Description</td>
</tr>
<tr>
<td>1-3</td>
<td>1.3 Previous Studies and Reports</td>
</tr>
<tr>
<td>1-3</td>
<td>1.3.1 Report of Phase I Environmental Site Assessment</td>
</tr>
<tr>
<td>1-4</td>
<td>1.3.2 Report of Phase II Environmental Site Assessment</td>
</tr>
<tr>
<td>1-4</td>
<td>1.3.3 Resampling of Monitoring Well No. 3</td>
</tr>
<tr>
<td>1-5</td>
<td>1.3.4 Water Well Search</td>
</tr>
<tr>
<td>1-5</td>
<td>1.3.5 Previous Correspondence</td>
</tr>
<tr>
<td>2-1</td>
<td>2.0 OBJECTIVES OF INVESTIGATION ACTIVITIES</td>
</tr>
<tr>
<td>2-1</td>
<td>2.1 Purpose</td>
</tr>
<tr>
<td>2-1</td>
<td>2.2 Extent of Affected Media</td>
</tr>
<tr>
<td>2-1</td>
<td>2.3 Human or Environmental Exposure Potential</td>
</tr>
<tr>
<td>2-2</td>
<td>2.4 Quality Assurance</td>
</tr>
<tr>
<td>3-1</td>
<td>3.0 SCOPE OF ASSESSMENT ACTIVITIES</td>
</tr>
<tr>
<td>3-1</td>
<td>3.1 Analytical Testing Rational</td>
</tr>
<tr>
<td>3-1</td>
<td>3.2 Drilling and Sampling Scheme Rational</td>
</tr>
<tr>
<td>3-2</td>
<td>3.3 Limited Phase II Drilling and Sampling, December 1999</td>
</tr>
<tr>
<td>3-2</td>
<td>3.4 Phase II Drilling and Sampling, February 2000</td>
</tr>
<tr>
<td>3-3</td>
<td>3.5 Boring Locations and Depths</td>
</tr>
<tr>
<td>4-1</td>
<td>4.0 SITE INVESTIGATION RESULTS</td>
</tr>
<tr>
<td>4-1</td>
<td>4.1 References</td>
</tr>
<tr>
<td>4-1</td>
<td>4.2 Physiography and Regional Geology</td>
</tr>
<tr>
<td>4-3</td>
<td>4.3 Hydrology</td>
</tr>
<tr>
<td>4-3</td>
<td>4.4 Site Geology and Hydrology</td>
</tr>
<tr>
<td>4-3</td>
<td>4.5 Groundwater Resource Classification</td>
</tr>
<tr>
<td>4-3</td>
<td>4.5.1 Define Water-Bearing Unit</td>
</tr>
<tr>
<td>4-4</td>
<td>4.5.2 Characterized Current Groundwater Use</td>
</tr>
<tr>
<td>4-4</td>
<td>4.5.3 Evaluate Water Quality</td>
</tr>
<tr>
<td>4-4</td>
<td>4.5.4 Estimate Potential Well Yield</td>
</tr>
<tr>
<td>4-4</td>
<td>4.5.5 Document Groundwater Classification Results</td>
</tr>
<tr>
<td>4-8</td>
<td>4.6 Analytical Results Assessment</td>
</tr>
<tr>
<td>4-8</td>
<td>4.6.1 Chemicals of Concern</td>
</tr>
<tr>
<td>4-9</td>
<td>4.6.2 Background Assessment</td>
</tr>
</tbody>
</table>
TABLE CONTENTS (Continued)

5.0 **Impact Characterization** .. 3-1
 5.1 Soil Impact ... 3-1
 5.2 Groundwater Impact .. 3-1
 5.3 Contaminant Migration Potential 5-2
 5.4 Groundwater Quality .. 5-2

6.0 **Summary and Conclusions** .. 6-1
 6.1 Summary ... 6-1
 6.2 Conclusions .. 6-1

7.0 **Recommendations** ... 7-1

TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>Boring and Sampling Plan Rational</td>
<td>3-1</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Boring Locations</td>
<td>3-3</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Topographic Map/Site Location</td>
<td>1-2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Site Sketch/Boring Location</td>
<td>1-2</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Geologic Section</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Geologic Section</td>
<td>4-3</td>
</tr>
</tbody>
</table>

PLATE

Final Survey, Part of Block "K", Third Section of Northside West Addition,
City of Richardson, Texas .. In Pocket

APPENDICES

- Appendix A Sampling Methods, Decontamination Methods, and Quality Assurance
- Appendix B Soil Boring and Well Installation Logs
- Appendix C Field Notes

APPENDIX

Supporting Laboratory Analytical Data and Custody Forms
Appendices E and F Site History and Site Photographs (see Phase I ESA Report)
Appendix G Water Well Report
EXECUTIVE SUMMARY

The Camelot Shopping Center is a tract of land in the John Edmondson Survey, Abstract No. 420, and a part of Block "K" of the Third Section of Northrich West Addition, in the City of Richardson, Dallas County, Texas, 580 West Arapaho Road. This 6.4-acre site is submitted for entry into the Voluntary Cleanup Program pursuant to $361,604 of the Texas Solid Waste Disposal Act, and is the subject of this Site Investigation Report.

The Camelot Shopping Center contains four separate one-story buildings. During a Phase I ESA, it was discovered that one building, Building No. 200 on the east side of the shopping center, at one time contained a dry-cleaning operation in the northwestern suite. The dry-cleaning operated from approximately 1968 to 1974. Based on that finding, a limited Phase II ESA was conducted to determine if the property had been adversely environmentally impacted. Three monitoring wells, one soils boring, and two hand auger holes were drilled inside and around the rectangular shaped structure. The monitoring well at the south end of the building showed 33.3 mg/L PCE contamination in the shallow groundwater. In February 2000, four additional monitoring wells and two hand auger borings were sited, drilled, and sampled to define the extent and levels of contamination on the property. Only one boring encountered water during the drilling, and an analysis of the water from the well showed no contamination. Investigation across the property showed only one localized area of contamination. One possible source of the impact is the dry-cleaning operation in Building 200. Another possibility is that spent solvents may have been disposed of in the grassy areas at the south end of Building 200. The exact source is non-conclusive.

The subject site is underlain by six to 14 feet of dark brown to black clay grading to a tan and gray clay near the contact with the underlying Austin Chalk. Beneath the clay is a gray to cream chalk, weathered in the upper one to two feet. The water level in the two borings that encountered groundwater is approximately 10 feet below ground surface. The materials are all highly impermeable.

PCE contamination did not exceed the adjusted Medium-Specific Concentrations, Standards, and Criteria for Health-Based Closure/Remediation (relating to Medium-Specific Concentration of Risk Reduction Standard 2). The shallow perched groundwater cannot sustain a single well yield of 150 gpd. Using TNRCC draft Procedures for Determination of Groundwater Resource Classification, in our opinion, the water body is a Class 3 aquifer which allows the cleanup level in the groundwater to be multiplied by 100.

Data supporting application into the Voluntary Cleanup Program is presented in this report. In addition, we request issuance of a Certificate of Completion for the subject property using Risk Reduction Standards Number 2.
1.0 INTRODUCTION

1.1 GENERAL

At the request of Mr. Charles Yang, Yang Realty, Inc., Chiang, Patel & Yerby, Inc. (CP&Y), conducted an environmental site investigation on the Camelot Shopping Center at 580 West Arapaho Road, Richardson, Texas. This investigation was performed in February 2000, to define the extent of contamination, specifically, tetrachloroethane and its degradation products.

The Camelot Shopping Center consists of four separate one-story buildings on the corner of Arapaho Road and Hampshire Lane in Richardson, Texas. The shopping center, constructed in the late 1960s, covers approximately 6.4 acres. A Phase I Environmental Site Assessment (ESA) was conducted on the property in December 1999, by White Rock Consultants, Inc., (WRC). (Report of Phase I Environmental Site Assessment, Camelot Shopping Center, 580 West Arapaho Road, Richardson, Texas, December 7, 1999). The results of that ESA identified a dry-cleaning establishment that operated on the property from approximately 1968 to 1974. The very nature of the dry-cleaning business alerted WRC to possible environmental issues and concerns. As a result, WRC was directed by their client to proceed with a Phase II ESA to assess the presence or absence of adverse impact from the former on-site dry-cleaning operation.

In December 1999, WRC drilled four (4) soil borings outside the building previously occupied by the dry-cleaning establishment. Three of the borings were advanced to 20 feet below the ground surface (bgs) and converted to permanent monitoring wells. One boring, on the north end of the building, was advanced to eight (8) feet bgs. Two shallow hand auger borings were drilled inside the suite that previously contained the dry-cleaning establishment at locations where one would suspect the dry-cleaning machine would be located. All of the borings were dry at the time of the drilling, except MW-3 located at the south end of the building. Water from that well revealed tetrachloroethane (PCE) contamination measured at 33.3 μg/L. Select soil samples showed low levels of acetone that were well below the maximum concentration levels (MCL) allowed in the Texas Risk Reduction Standard Number 1. Other than the acetone, no volatile organic solvents (VOCs) were detected in any of the soil samples.

The property is described as a tract of land in the John Edmonds Survey, Abstract No. 429, Block “K” in the Northrich West Addition, City of Richardson, Dallas County, Texas. Rockingham Lane borders the Camelot Shopping Center to the north with an apartment complex north of Rockingham Lane. Hampshire Lane lies west of the property with small office buildings and associated parking areas on the west side of Hampshire Lane. Across Arapaho Road to the south are a Fina Service Station, a full service car wash, and a strip shopping center. Undeveloped land and an Auto Zone auto parts store are east of the property. Zoning for the property is general business. Before urbanization of the area, the property was generally undeveloped. The 1947 aerial photograph shows a driveway bisecting the property in a north-south direction leading to a single-family residence north of the property. Future uses of the property and structures on the property is general business.

A legal description of the Camelot Shopping Center is provided on the plate contained in the pocket of this report.

1.2 LOCATION AND DESCRIPTION

The Camelot Shopping Center is in north central Dallas County at the intersection of Arapaho Road and Hampshire Lane, approximately 3,000 feet west of Central Expressway (I-75). Topographic relief across the general area slopes gently to the south and southeast, and lies between elevation 640 and 650 feet above mean sea level. The 6.4-acre shopping center is essentially flat, sloping approximately four feet from northeast to southwest. Figure 1 is part of the Garland, Texas, U. S. Geological Survey topographic map showing the project location and general topographic features of the area. Figure 2 is a generalized Site Map showing the outline of the shopping center buildings, property boundaries, and boring locations.
During the investigation for the Phase I ESA, it was noted that a dry-cleaning establishment operated at the north end of Building 200 for approximately six years from 1968 to 1974. (Note: Building 200 is a one-story brick building approximately 60 feet by 247 feet located along the east boundary of the property.) The cleaner was known as Barton Howell Cleaners. Likely and potential on-site concerns included volatile organic solvents associated with dry-cleaning operations.

1.3 PREVIOUS STUDIES AND REPORTS

White Rock Consulting, Inc., conducted a Phase I ESA on the Camelot Shopping Center in December 1999. Following the ESA, which discovered the presence of a past dry-cleaning operation, WRC conducted a limited Phase II ESA. This investigation was conducted in late December 1999, with the report of findings submitted in January 2000. These investigations and reports were prepared for Mr. Norman Hoppenstein for Hoppenstein Properties, a potential buyer for the Camelot Shopping Center. The reports and summary of findings and conclusions are listed below.

1.3.1 Report of Phase I Environmental Site Assessment, Camelot Shopping Center, 580 West Arapahoe Road, Richardson, Texas, WRC Project No. 99-1105, dated December 7, 1999.

WRC found evidence that the property may have been adversely impacted from historic, on-site, dry-cleaning operations in the north suite of Building 200, and recommended further assessment of the property including soil and groundwater sampling. They also recommended the characterization and proper disposal of two 55-gallon drums on the north side of Building 100.

1.3.2 Report of Phase II Environmental Site Assessment, Camelot Shopping Center, 580 West Arapahoe Road, Richardson, Texas, WRC Project No. 99-1202, dated January 6, 2000.

Three monitoring wells were drilled and constructed around Building 200 to a depth of 20 feet bgs. Only monitoring well 3 at the south end of Building 200 had groundwater. One 8-foot deep boring was drilled and sampled at the north end of Building 200; no groundwater was encountered. Two shallow hand auger holes were drilled inside the suite that previously housed the dry-cleaningers. These holes were at the back of the suite where one would suspect the dry-cleaning machines and vats would be located. Based on the investigation, WRC concluded that the property had been adversely impacted "above regulatory reporting limits by PCE". Acetone was detected in shallow soil samples, but at levels well below the MCL. PCE was detected in monitoring well 3 at a concentration of 33.3 μg/L. The location of monitoring well 3 appeared to be in a down gradient direction from the former dry-cleaningers. WRC recommended that additional drilling and sampling be conducted to define the extent of the PCE contamination.

1.3.3 Resampling of Monitoring Well No. 3

At the request of Chuang, Patel and Yerby, Inc., (CP&Y), monitoring well 3 was resampled with samples submitted to two different laboratories for analysis of VOCs. Total Dissolved Solids (TDS) were also requested to determine if the water was potable by EPA standards. Samples were taken by WRC on January 19, 2000. Laboratory results measured PCEs at 41.2 and 36 μg/L in the two samples. TDS were 652 mg/L.
1.3.4 Water Well Search

At the request of WRC, D & M Environmental Research, Austin, Texas, searched the Texas Water Development Board (TWDB) and Texas Natural Resource Conservation Commission (TNRCC) databases and additional file data/records to ascertain the existence of any water wells within a one-mile radius of the Camelot Shopping Center. No wells are within one-half-mile of the property. The research showed two wells approximately 4,800 feet southeast of the site drilled for the City of Richardson in 1947 and 1952. Both wells are at the same location, but at different depths. One well depth is reported at 2,068 feet and the other at 3,333 feet. Both wells are unused. The Water Well Report is contained in Appendix G.

1.3.5 Previous Correspondence

No formal correspondence has been generated with the TNRCC on this project.

2.0 OBJECTIVES OF INVESTIGATION ACTIVITIES

2.1 PURPOSE

The purpose of investigations subsequent to the Phase I and limited Phase II ESAs was to identify the extent of the PCE contamination and concentration levels. The stratigraphy across the area was carefully studied to understand the geology and groundwater hydrology. Aquifer parameters were estimated from soil classification and laboratory tests to assist in determining groundwater resource classification. The Barton Howell Cleaners that operated in the northernmost suite of Building 200, was previously identified as the suspected source of adverse impact.

2.2 EXTENT OF AFFECTED MEDIA

Shallow perched groundwater at the site has been identified as the affected media. Results of the assessment show only a small perched water body around monitoring well 3 at the south end of Building 200 to be affected. Water from monitoring well 5, located approximately 115 feet west of monitoring well 3, did not contain any detectable VOC contamination. Monitoring well 6 located 90 feet southeast of monitoring well 3 was dry at the time of the drilling and 24 hours after drilling. Monitoring well 7, located 60 feet northeast of monitoring well 3 was also dry at the time of drilling and for at least 24 hours after construction of the well. All borings were drilled into the Austin Chalk Formation.

2.3 HUMAN OR ENVIRONMENTAL EXPOSURE POTENTIAL

No chlorinated solvents were found in the soils on the property or in shallow soils from borings drilled through the floor slab at the most logical location of the dry-cleaning machine in the suite. Samples of backfill material from the sewer trench on the east side of the building also...
were non-detect for VOCs. Only water from monitoring well 3 showed VOC contamination. Drilling and sampling have shown that the limits of contamination are confined to a small perched water body around monitoring well 3. Additionally, the permeability of the soils overlying the bedrock is very low. Based on the classification of materials and groundwater recovery rates, the groundwater migration rate is very slow. The site is not located within 0.5-miles of a public water supply well. Based on the estimated potential well yield, our evaluation is that the applicable groundwater classification is a Class 3. The potential for human or environmental exposure is low.

2.4 QUALITY ASSURANCE

Quality assurance during drilling and sampling consisted of a decontamination procedure using a phosphate-free soap and rinse with distilled water. Sampling equipment was decontaminated prior to each sampling event. The drill rig and tools were steam cleaned after each boring. Groundwater samples were taken with a dedicated bailer to prevent any possibility of cross contamination between wells. All samples were placed in laboratory-supplied sample containers and stored in a chest with ice for chilling until delivery to the laboratory. Soil sampling was continuous with a 5-foot long split barrel. Samples were collected every two feet or less and field screened for relative VOC concentrations using a handheld organic vapor meter (OVVM). Two soil samples from each deep boring were submitted for laboratory analysis. One sample was from the upper five feet, and the remaining sample from residual soil materials immediately above the top of bedrock. One sample was taken from each hand auger boring. Detection limits for the compounds of concern were 5.0 μg/L.

3.0 SCOPE OF ASSESSMENT ACTIVITIES

3.1 ANALYTICAL TESTING RATIONAL

Based on the Phase I and limited Phase II ESAs and the suspected source of adverse impact, the soil and groundwater samples were tested for volatile organics using approved laboratory analytical procedures.

3.2 DRILLING AND SAMPLING SCHEME RATIONAL

Borings placed during the limited Phase II program were designed to first define the groundwater gradient and direction across the area, and secondly to sample around the suite and building where the dry-cleaning operation was located to determine if there had been adverse impact to the environment. Borings were to drill through the overburden into the underlying Austin Chalk. The Austin Chalk is believed to be an impermeable barrier to any downward migration of groundwater. The borings from both drilling events were positioned with the following rational.

<table>
<thead>
<tr>
<th>BORING NO</th>
<th>LOCATION AND REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>East side of Building 200 adjacent to dry-cleaner suite. VOC detection and geology/hydrology.</td>
</tr>
<tr>
<td>MW-2</td>
<td>West side of Building 200 adjacent to dry-cleaner suite. VOC detection and geology/hydrology.</td>
</tr>
<tr>
<td>MW-3</td>
<td>South side of Building 200. Apparent down gradient position from dry-cleaner suite. VOC detection and geology/hydrology.</td>
</tr>
<tr>
<td>B-1</td>
<td>North side of Building 200 adjacent to dry-cleaner suite. VOC detection and geology/hydrology.</td>
</tr>
</tbody>
</table>
3.3 LIMITED PHASE II DRILLING AND SAMPLING, DECEMBER 1999

WRC conducted the first drilling and sampling at the Camelot Shopping Center on December 20, 1999. Three borings were drilled to depths of 20 feet bgs and converted to monitoring wells. One boring was drill to eight feet and backfilled. Two hand auger borings were drilled inside the former dry-cleaning suite at the most logical location for the dry-cleaning machine. Groundwater was encountered in only MW-3. The other two wells were dry 24 to 48 hours after drilling.

3.4 PHASE II DRILLING AND SAMPLING, FEBRUARY 2000

CP&Y conducted additional field investigations in February 2000, to define the extent of contamination discovered in MW-3 during the first round of drilling and sampling. Four borings were drilled and converted to monitoring wells. Two of the borings were drilled to depths of 14 feet and two to 19 feet. In both cases, the object was to drill the borings into the impermeable chalk bedrock that underlies the site at an approximate depth of 12 bgs. Two hand auger borings were drilled along side the east side of Building 200 at the location of the sewer line to sample the backfill in the trench. Only MW-5 encountered groundwater. Laboratory analysis of the water from MW-5 showed no contamination.

3.5 BORING LOCATIONS AND DEPTHS

Figure 2 shows a sketch of the Camelot Shopping Center and all boring and well locations. Table 3-2 provides boring numbers, drilling dates, depth below ground surface, and locations based on a local coordinate system.

<table>
<thead>
<tr>
<th>Boring No.</th>
<th>Date Drilled</th>
<th>Depth (ft.)</th>
<th>Local Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>12/20/99</td>
<td>20</td>
<td>East: 982 North: 1224</td>
</tr>
<tr>
<td>MW-2</td>
<td>12/20/99</td>
<td>20</td>
<td>East: 583 North: 1248</td>
</tr>
<tr>
<td>MW-3</td>
<td>12/20/99</td>
<td>20</td>
<td>East: 996 North: 996</td>
</tr>
<tr>
<td>B-1</td>
<td>12/20/99</td>
<td>8</td>
<td>East: 940 North: 1270</td>
</tr>
<tr>
<td>HA-1</td>
<td>12/20/99</td>
<td>2</td>
<td>East: 942 North: 1248</td>
</tr>
<tr>
<td>HA-2</td>
<td>12/20/99</td>
<td>2</td>
<td>East: 942 North: 942</td>
</tr>
<tr>
<td>MW-4</td>
<td>02/11/00</td>
<td>14</td>
<td>East: 930 North: 1067</td>
</tr>
<tr>
<td>MW-5</td>
<td>02/11/00</td>
<td>19</td>
<td>East: 832 North: 973</td>
</tr>
<tr>
<td>MW-6</td>
<td>02/11/00</td>
<td>14</td>
<td>East: 996 North: 996</td>
</tr>
<tr>
<td>MW-7</td>
<td>02/11/00</td>
<td>19</td>
<td>East: 983 North: 1060</td>
</tr>
<tr>
<td>HA-3</td>
<td>02/11/00</td>
<td>2.9</td>
<td>East: 991 North: 1197</td>
</tr>
<tr>
<td>HA-4</td>
<td>02/11/00</td>
<td>6</td>
<td>East: 903 North: 1095</td>
</tr>
</tbody>
</table>

*Not surveyed

TBM shown on the boring sketch was assigned local coordinates of 1000E and 1000N.
4.0 SITE ASSESSMENT RESULTS

4.1 REFERENCES

CP&Y used the following references to prepare this discussion on the physiography and regional geology:

- The University of Texas at Austin, Bureau of Economic Geology, *Geologic Atlas of Texas, Dallas Sheet*, 1987
- Texas Board of Water Engineers Bulletin 3709, *Geology and Groundwater Resources of Tarrant County, Texas*, September 1937

4.2 PHYSIOGRAPHY AND REGIONAL GEOLOGY

Dallas County and north-central Texas, for the most part, lie within the east-central Province of the Texas Coastal Plain (Hill, 1901). Distinct north trending belts of similar identifiable soil, plant, and topographic features can be recognized in the area. The land forms from west to east are: Eastern Cross Timbers, Eagle Ford Prairie, Black Prairie, and Taylor Prairie.

- **Eastern Cross Timbers.** The Eastern Cross Timbers lies to the west of the project site in Tarrant County. It features gently rolling wooded hills and gentle slopes that have developed upon the Woodbine Formation.

- **Eagle Ford Prairie.** The Eagle Ford Prairie lies east of the Eastern Cross Timbers and west of the project site. It features a broad black open prairie developed upon the outcrop of the Eagle Ford Formation.

- **Black Prairie.** The Camelot Shopping Center is in the Black Prairie physiographic province, a relatively flat, treeless surface that slopes gently south and eastward. This province, also identified as the White Rock Cuesta (Dallas Geological Society), is underlain by the Austin Chalk Formation.

- **Taylor Prairie.** The Taylor Prairie is a black rolling plain, formed on the outcrop of the Taylor Formation. The land form covers the eastern one-third of Dallas County.

Dallas County is drained by the Trinity River and its tributaries. The main tributaries of the Trinity are the West Fork and the Elm Fork. They join west of Dallas to form the main stream. Flood plain and terrace deposits associated with the Trinity River and its tributaries cover more than 50 percent of the surface area of Dallas County (Dallas Geological Society).

Sedimentary rocks of Cretaceous Age crop out over Dallas County and north-central Texas. These formations are underlain by 6,000 to 7,000 feet of shale, sandstone, and limestone of the Pennsylvanian System, and are overlain by Recent and Pleistocene alluvial deposits of sand, gravel, clay, and silt in flood plain deposits along major streams. The Cretaceous System is divided into the Comanche and Gulf Series which represent two major invasions of the seas. The Comanche Series includes rocks of the Trinity, Fredericksburg, and Washita Groups (Lower Cretaceous). The Gulf Series includes the Woodbine, Eagle Ford, Austin, Taylor, and Navarro Groups (Upper Cretaceous). Outcropping Formations in Dallas County, from west to east, include the Eagle Ford Formation, the Austin Chalk, and the Taylor Marls. The Austin has a thickness of approximately 550 feet in southeast Dallas County. The thickness is likely closer to 300 feet in north Dallas County. The underlying Eagle Ford is approximately 480 feet thick.
in northern Dallas County. Rocks of the Cretaceous System slope gently toward the east and southeast, thus exposing formations of successively younger age from northwest to southeast.

4.3 HYDROLOGY

Sources of groundwater in Dallas County may be found almost entirely within the Trinity and Paluxy Sands of Lower Cretaceous age, the Woodbine Sands of Upper Cretaceous age, and the Recent or Pleistocene age gravels and sands of the upland areas and flood plains of the major drainage courses that traverse the county. The three formations that comprise the surface area in Dallas County, The Eagle Ford, Austin Chalk, and Taylor Marl, contain no sands and are, for the most part, dense and impervious. Reportedly (Dallas Geological Society) on rare occasions, the Austin has yielded small amounts of water from fractures found in the purer and more brittle parts of the formation. The Woodbine Sand lies below the Eagle Ford Formation and is considered a minor aquifer in Texas.

4.4 SITE GEOLOGY AND HYDROLOGY

The Austin Chalk, which underlies the Camelot Shopping Center, has been described as primarily an impure chalk interstratified with softer marl. The chalk weathers into a black clay, not unlike the soils that form on the Eagle Ford and Taylor Marls, but generally with a less thick regolith. In Dallas County, the Austin Chalk Formation has been divided into a Lower Austin Member, Middle Austin Member, and Upper Austin Member. The Lower Chalk Member is generally more resistant than the other members. It forms the prominent White Rock escarpment so evident in central and southern Dallas County. The Middle Member generally has more and thicker marly and shaly beds and fewer massive chalk beds than the Upper and Lower Members. The Upper Member is similar to the Lower Member, but less resistant. The division of the Austin is based on both the stratigraphy and fossil record in the strata. The Camelot Shopping Center is underlain by the Middle Member of the Austin Chalk Formation.
The Houston Black-Urban land complex is the soil soil type at the subject property. It consists of deep, moderately well-drained, nearly level to gently sloping clay soils. Houston Black soils comprise approximately 40 percent of this complex; urban land (areas covered with buildings and pavement) makes up approximately 25 percent. Minor soil types make up the remainder. The clay soils have a very slow permeability and the available water capacity is high; runoff is medium.

Subsurface investigations made for the Camelot Shopping Center show the geology to correlate very well across the site. Borings encountered from six to 14 feet of dark brown to black-to-tan and gray clay overlying a gray to cream chalk. The clay is highly plastic and dry to moist. The chalk is weathered in the upper zone becoming gray and moderately hard to hard at depth. The chalk was dry at all locations. The variability in the depth to the chalk is in part due to the difference in the interpretation by the geologists and engineers logging the samples during the two separate drilling events. Contact between the tan and gray clay with calcareous concretions and underlying weathered chalk is gradational and picking the exact contact is subjective. The Austin Chalk bedrock appears to form a barrier to the vertical migration of shallow groundwater.

Groundwater at the two locations where water was encountered, is shallow perched water. Based on boring data, it appears the horizontal extent of the perched body is limited. Of the seven monitoring wells constructed, all but two were dry during drilling. Only after several weeks did two additional wells show a small accumulation of water (MW-1 and MW-2) in the bottom of the wells. Where encountered, groundwater occurs in the tan to gray clay or highly weathered chalk about 10 lbs. It is perched on top of the impermeable Austin Chalk bedrock. It is common throughout Texas to find that where bedrock is comprised of shale or other impermeable materials, perched water will be encountered. The water level in MW-3 and MW-5 were at approximately the same elevation, thus preventing the determination of the groundwater gradient and direction. Water levels in MW-2 and MW-4 are not reliable for use.
in determining the gradient and direction. If, as is the usual case, the water level reflects the
surface drainage, the flow direction should be toward the southeast.

The property has a slight slope to the south toward an unnamed tributary of Cottonwood
Creek. The tributary flows westerly and southwesterly to its confluence with Cottonwood
Creek, approximately 2,500 feet from the Camelot Shopping Center. The unnamed tributary
is across Arapaho Road approximately 200 feet south of the subject property.

4.5 GROUNDWATER RESOURCE CLASSIFICATION

Following guidelines in Appendix VIII, Procedures for Determination of Groundwater Resource
Classification, Texas Risk Reduction Program, Draft Version, December 1996, CP&Y classifies
the shallow perched groundwater at the Camelot Shopping Center as a Class 3 aquifer. The five
steps in the groundwater classification process required to determine the aquifer classification
have been followed. Discussion is presented below.

4.5.1 DEFINE WATER-BEARING UNIT

Available hydrogeologic data must be reviewed to define the lateral and vertical extent of COC
migration with water-bearing strata underlying the site and potential hydraulic interconnection
of the contaminated strata with additional unaffected water-bearing units.

Eight borings were drilled across the subject property to define the geology and hydrology, and
to determine the extent and levels of contamination in the shallow perched groundwater. Based
on data collected from the drilling, sampling, and laboratory testing, it has been concluded that
a shallow, perched, unconfined contaminated groundwater body of limited vertical and
horizontal extent underlies the subject property in the vicinity of MW-3 located at the south
end of Building 200. Borings around MW-3, with the exception of MW-5 located 115 feet to
the west of MW-3, were dry 24 to 48 hours after drilling. All borings were drilled into
impermeable Austin Chalk. Water encountered occurred at a depth of approximately 10 feet
bgs. The saturated thickness appeared to be no more than one foot, and occurred at the
gradiental contact between the residual clay overburden and the Austin Chalk. The saturated
material was chiefly tan and gray clay with calcareous concretions. No sand or gravel seams or
beds were noted in the core samples. The lateral extent of this saturated section appears limited
as borings 90 feet to the southeast and 65 feet to the northwest were dry. The potential
physical or hydraulic connection of the thin saturated section to more productive, unaffected
strata would be very low to non-existent. The Austin Chalk is not a known groundwater source
in the area. There are no active water wells within one mile of the subject property. The two
wells that are in the data base were drilled in the late 1940s and 50s into the Trinity Formation
at depths in excess of 2,500 feet. It is not known if these wells were ever used.

Appendix VIII defines the term water-bearing unit as a geologic stratum of sufficient
transmissivity to yield groundwater in usable quantities (i.e., > 150 gpd) to a well on a
continuous basis. Based on our findings, we do not believe this perched water body meets that
criteria.

4.5.2 CHARACTERIZED CURRENT GROUNDWATER USE

D & M Environmental Research prepared a water well report which revealed no wells within
0.5-mile of the site. D & M searched both the Texas Water Development Board and Texas
Natural Resource Conservation Commission records. The area is served by the Dallas Water
Utilities from surface water sources. The Water Well Report is included in Appendix G.

4.5.3 EVALUATE WATER QUALITY

A water sample from MW-3, taken on January 10, 2000, showed the water contained 0.52 mg/L
total dissolved solids (TDS). The sample collection and handling procedures conformed to
applicable TNRCC and EPA guidelines.
4.5.4 ESTIMATE POTENTIAL WELL YIELD

The estimated maximum sustainable well yield at the site was based on an estimation from aquifer parameters. The estimated aquifer parameters selected to determine the upper bound estimate of maximum sustainable well yields were very conservative based both on the saturated thickness observed in the field and the typical hydraulic conductivity values shown for various soils on Table VIII.1. **Estimated saturated thickness used was five feet**, which is more than three times the observed saturated thickness. This figure is used essentially to cover the basal residual soil and weathered chalk section from approximately 9 feet to 14 feet legs in MW-5. The estimated hydraulic conductivity was 10E-6 which classifies the material as a silty clay to clay (Table VIII.1). Atterberg limits on a soil sample from MW-5 between seven and 9 feet classified the material as CH Unified Soils Classification System. The liquid limit was 75 with a plasticity index of 54.

Using the equation shown in Figure VIII.3 for an unconfined water-bearing unit and the estimated aquifer parameters discussed above, the maximum sustainable single well yield would be less than 1 gpd.

\[
Q = \frac{16Kt^2}{6.3 + \log (Kb)}
\]

\[
= \frac{16 (1 \times 10E-6 \times 2.5)}{6.3 + \log (1 \times 10E-6 \times 5)}
\]

\[
= 4 \times 10E-4 \text{ gpm}
\]

\[
= 0.57 \text{ gpd}
\]

From this calculation, it may be seen that even if the hydraulic conductivity were off two orders of magnitude, i.e., 1 x 10E-4, the maximum sustainable yield would still be less than 20 gpd. Based on the above analysis, we classify this aquifer as a Low Yield (Q < 150gpd) Class 3.

4.5.5 DOCUMENT GROUNDWATER CLASSIFICATION RESULTS

Groundwater classification results are documented as follows:

- The water-bearing unit is a thin saturated clayey soil that overlies the Austin Chalk bedrock. The stratigraphic section has been identified in two wells where groundwater was encountered. Only the water from one well was contaminated (33 μg/L PCE).
- There are no water wells within 0.5-mile of the subject site.
- Water from the unconfined perched groundwater body is potable. TDS measured 652 mg/L.
- Estimated production well yield capacity is less than 1 gpd. This is based on an estimated K of 1 x 10E-6 and a saturated thickness of 3 feet.
- Horizontal extent of the perched water body is limited. Surrounding wells to the north and south were dry during drilling.

4.6 ANALYTICAL RESULTS ASSESSMENT

4.6.1 CHEMICALS OF CONCERN

Volatile organics possibly associated with the operation of a dry-cleaning establishment in the northernmost suite of Building 200 from the approximate period between 1968 and 1974 are the chemicals of concern. An approved laboratory analyzed groundwater and soil samples using EPA analysis method 8260B. Of four groundwater samples, only one showed any detectable
VOCs. MW-3 contained 33 µg/L PCE. Three subsequent tests on water from the well confirmed the presence of the PCE.

The most prevalent feature of the compound discovered is that it is known as a dense non-aqueous phase liquid (DNAPL). That is, the compound is heavier than water, and therefore, will not float on water like petroleum compounds. Within a groundwater aquifer, it is commonly found at or near the bottom of the saturated layer. This characteristic makes assessment and remediation more difficult than a typical hydrocarbon.

4.6.2 BACKGROUND ASSESSMENT

Because of the absence of a continuous water-bearing strata across the site, a background well, as such, is absent. It was intended to use MW-4 located on the west side of the subject property as a background well; however, that well was dry. MW-5 was the only other well that encountered groundwater during drilling. The water level in that well is within 0.1-foot elevation of the water level in MW-3. MW-1 and MW-2 accumulated a minor amount of water several weeks after completion of drilling. The water did not contain VOCs above the detection limits of 5 µg/L.

5.0 IMPACT CHARACTERIZATION

5.1 SOIL IMPACT

Low concentrations of acetone were detected in the shallow samples (3' to 2 feet) in MW-1, MW-2, MW-3, B-1, and HA-4. The concentrations varied from a low of 1.9 µg/kg in the sample from HA-4 to 166 µg/kg in MW-3. These levels are not considered of environmental significance. The MCL for acetone in soils, Texas Risk Reduction Standard Number 1, for groundwater protection in a residential area is 365,000 µg/kg.

5.2 GROUNDWATER IMPACT

Only MW-3 of the four monitoring wells sampled (three were dry when drilled) showed any contamination. MW-3 was sampled on three separate occasions, December 22, 1999, January 19, 2000, and February 15, 2000. PCE measured 33.3 µg/L for the first sampling event. To verify the result, two samples were taken on January 19, 2000, and sent to two separate laboratories. Results for this sampling event showed PCE at 30 µg/L and 41.2 µg/L. The sample taken on February 15, 2000, was taken so all wells could be sampled simultaneously. Results of the analysis on the sample were 22 µg/L.

Precalculated cleanup level for PCE for residential groundwater is 5 ppb (30 TAC 335.568 Appendix II). This level may be elevated 100 times if the water-bearing unit is a Class 3 aquifer either based on water quality being nonpotable (TDS greater than 10,000 mg/L) or the aquifer having a low yield of less than 150 gpd. No public water supply wells can be within 0.5 miles of the site. Based on our analysis of all available data developed to date, this shallow perched water body is a Class 3 aquifer (cannot sustain a yield of 150 gpd). Therefore, the cleanup level at this site for the PCE may be elevated to 500 ppb.
5.3 CONTAMINANT MIGRATION POTENTIAL

The geologic setting for the Camelot Shopping Center features highly impermeable residual soils and primary materials (bedrock). No sand or gravel seams were encountered that would transmit any significant amounts of water. Austin Chalk was encountered at depths below the ground surface from six to 14 feet. The Austin Chalk would serve as an impermeable barrier to any downward migration of the perched water. The fact that the water is perched is testimony to the impervious nature of the chalk. The potential for contaminant migration is very low to non-existent.

5.4 GROUNDWATER QUALITY

The shallow perched water has a TDS of 652 mg/L.

6.0 SUMMARY AND CONCLUSIONS

6.1 SUMMARY

The scope of this site investigation was adequate to determine the degree and extent of adverse environmental impact. This source of the impact is undetermined. One possible source is the dry-cleaning establishment that operated from approximately 1968 to 1974. Another possible source is the disposing of organic compounds in the grass-covered area at the south end of Building 200. The seven monitoring wells, four hand auger borings, and one soil boring revealed the presence of a shallow perched water body limited in aerial extent and area of contamination. At one location, water from this shallow source showed PCE contamination measuring 33 mg/L. No significant contamination was found in the soils from the 12 borings.

A thorough analysis of the groundwater body has shown that the aquifer is not capable of a sustained yield of 150 gpd from a single well. This is based on assuming very conservative parameters for the hydraulic conductivity and saturated thickness. The permeability could be increased two orders of magnitude from our estimate of 1 x 10E-6, and the calculations would yet show the sustained yield would be less than 20 gpd from a well.

The historic dry-cleaning operation remains one suspected source for volatile organics in the shallow groundwater found in MW-3. However, the absence of a continuous water-bearing bed across the property casts doubt on this being the source. Cleaning solvents could have been dumped around the MW-3 area in either the dumpster that has always been there, or the grassy area where the dumpster sits.
6.2 CONCLUSIONS

Risks to human health and environment from this site appear minimal. The shallow perched water body is limited in areal extent and incapable of sustaining a yield of more than 150 gpd from a single well. The Austin Chalk serves as an impermeable barrier to any downward migration of the contaminated groundwater. Geology at the site suggests that lateral migration is not a concern since wells surrounding the contaminated source were dry at the time of drilling. Based on findings to date, a site-specific risk assessment is not warranted.

7.0 RECOMMENDATIONS

Further assessment may not be warranted. CP&Y recommends that the TNRCC accept this site into the Voluntary Cleanup Program and, after review, issue a Certificate of Completion for the property.
Report of

PHASE II ENVIRONMENTAL SITE ASSESSMENT
CAMELOT SHOPPING CENTER
580 WEST ARAPAHO ROAD
RICHARDSON, TEXAS

Prepared for
Hoppenstein Properties, Inc.
P.O. Box 796023
Dallas, Texas 75379-6023

Prepared by
White Rock Consulting, Inc.
Project No. 99-1202
January 2000

January 6, 2000
Mr. Neuman Hoppenstein
Hoppenstein Properties
P.O. Box 796023
Dallas, Texas 75379-6023

Subject: Report of Phase II Environmental Site Assessment
Cameo Shopping Center
580 West Arapaho Road
Richardson, Texas
White Rock Consulting Project No. 99-1202

Dear Mr. Hoppenstein,

White Rock Consulting, Inc. (WRC), is pleased to submit this report of our Phase II Environmental Site Assessment for the subject property. The purpose of our services was to assess the facility for adverse environmental impact from a previously identified potential environmental concern. This report is prepared in general accordance with our proposal 99-1201, dated December 10, 1999.

This report is intended for the use of Hoppenstein Properties, Inc., only. Our services have been performed under mutually agreed upon terms and conditions. If other parties wish to rely on this report, please have them contact us so that a mutual understanding and agreement of the terms and conditions for our services can be established prior to their use of this information.

The findings contained herein are based upon the data, which was reviewed and documented in this report, along with our experience with similar projects. The discovery of additional information concerning the environmental conditions at the site should be reported to us so that we can reassess potential environmental impacts and modify our findings, if necessary.

We appreciate the opportunity to be of service to you. Please call us if you have any questions or if we may be of further service.

Sincerely,
White Rock Consulting, Inc.

Anne M. Hobbs
Project Manager

John D. Monger, PE
Principal Engineer
TABLE of CONTENTS

EXECUTIVE SUMMARY...1
1.0 BACKGROUND INFORMATION..1
2.0 PURPOSE, SCOPE OF WORK and REPORT LIMITATIONS.........................1
3.0 FIELD PROCEDURES..2
4.0 LABORATORY RESULTS..3
5.0 DISCUSSION OF RESULTS..4
6.0 CONCLUSIONS AND RECOMMENDATIONS..4

APPENDICES
APPENDIX A - FIGURES
APPENDIX B - PHOTOGRAPHS
APPENDIX C - SOIL BORING LOGS MONITORING WELL COMPLETION REPORTS
APPENDIX D - LABORATORY ANALYTICAL REPORTS

EXECUTIVE SUMMARY

Hoppenstein Properties, Inc. (Hoppenstein), has engaged White Rock Consulting, Inc. (WRC), to perform a Phase II Environmental Site Assessment (E1SA) of the Camellia Shopping Center located at 5800 West Arapaho Road, Richardson, Dallas County, Texas. The shopping center consists of four separate, one-story buildings totaling approximately 74,975 square feet of leasable space, located on approximately 6.4 acres. WRC conducted a Phase I E1SA of the subject property (Report of Phase I Environmental Site Assessment, Camellia Shopping Center, 5800 West Arapaho Road, Richardson, Texas, WRC Project No. 99-105, dated December 7, 1999). This assessment identified Barton Howell Cleaners as occupying the subject property from approximately 1969 to 1974. Mr. Alvin Barton, former owner of Barton Howell Cleaners, reported dry-cleaning operations were conducted on the subject property. The presence of historic dry-cleaning operations on the subject property presents an environmental concern, which prompted this Phase II E1SA. A full discussion of our findings, conclusions, and recommendations is contained in the body of this report. A summary of these findings is presented below:

WRC advanced four soil borings outside Building 200 (occupied by the former Barton Howell Cleaners) and two within the building. Three of the exterior soil borings were converted to groundwater monitoring wells. One of the three groundwater monitoring wells produced measurable groundwater within 48 hours after well installation. Selected soil and groundwater samples were collected and laboratory analyzed for volatile organic compounds (VOCs). The soil samples were not found to have VOCs, with the exception of low concentrations of acetone. The concentrations of acetone detected were below the established maximum contaminant level (MCL) for acetone in soils in a residential setting. The groundwater sample was found to have tetrachloroethylene (perchloroethylene or PCE) at a concentration of 33.3 micrograms per liter (μg/L) or parts per billion (ppb) equivalent. This is above the Texas Natural Resource Conservation Commission reportable concentration of five (5) μg/L.

Based on the results of this assessment, WRC concludes the subject property has been adversely impacted by perchloroethylene above current regulatory action levels. The source of the impact has not been determined but is most likely attributed to the historic, on-site dry-cleaning operations.

This executive summary is presented for convenience only. While the executive summary is an integral part of the report, it should not be used in lieu of reading the entire report, including the appendices.
1.0 BACKGROUND INFORMATION

Hoppenstein Properties, Inc. (Hoppenstein), has engaged White Rock Consulting, Inc. (WRC) to perform a Phase II Environmental Site Assessment (ESA) of the Camidot Shopping Center located at 380 West Lapham Road, Richardson, Dallas County, Texas. The shopping center consists of four separate, one-story buildings, totaling approximately 74,075 square feet of leasable space, located on approximately 6.4 acres. WRC conducted a Phase I ESA of the subject property (Report of Phase I Environmental Site Assessment, Camidot Shopping Center, 380 West Lapham Road, Richardson, Texas, WRC Project No. 99-1105, dated December 7, 1999). This assessment identified Barton Howell Cleaners as occupying the subject property from approximately 1968 to 1974. Mr. Alvin Barton, former owner of Barton Howell Cleaners, reported dry-cleaning operations were conducted on the subject property. The presence of historic dry-cleaning operations on the subject property presents an environmental concern, which prompted this Phase II ESA.

It is our understanding that Hoppenstein requires this Phase II ESA in consideration of purchasing the subject property. This assessment was performed substantially as outlined in WRC’s proposal 99-1101, dated December 10, 1999.

2.0 PURPOSE, SCOPE OF WORK and REPORT LIMITATIONS

PURPOSE

The purpose of this Phase II ESA was to assess the presence or absence of dry-cleaning fluids (perchloroethylene and its degradation products) in the soil and groundwater at the subject property from past dry-cleaning operations. This assessment is not designed to assess the extent of impact, but rather the presence of impact.

SCOPE OF WORK

Phase II ESA

The Phase II ESA was performed using generally accepted industry practices for this type of assessment in this geographic area. Specifically, WRC performed the following:

- Advanced four soil borings outside Building 200 using a truck-mounted drilling rig. Three borings were advanced to a depth of 20 feet below ground surface (bgs) and one boring was advanced to eight feet bgs. Selected soil samples were field-screened for relative volatile organic compound (VOC) concentrations. Two soil samples from each soil boring were laboratory analyzed for VOCs by EPA Method 8260.
- Installed three, two-inch diameter, EPA Type II groundwater monitoring wells in the 20-foot soil borings. Collected a groundwater sample from the groundwater producing well (MW-3) and laboratory analyzed it for VOCs by EPA Method 8260.

REPORT LIMITATIONS

This Phase II ESA has been conducted with the due care as normally provided by professionals involved in projects of similar scope. This report does not claim to represent future site conditions or events. Situations or activities resulting in environmental impact occurring subsequent to the report date are not to be construed as relevant to this assessment.

The intent of the limited Phase II ESA is to assess the presence or absence of adverse impact from the former on-site dry-cleaning operations.

3.0 FIELD PROCEDURES

WRC conducted soil and groundwater sampling on December 20 and December 22, 1999, respectively. The methodology for completing the subsurface assessment was to assess the soil and groundwater in an apparent crossgradient and downgradient positions of the former dry-cleaning operations. The locations of the soil borings-groundwater monitoring wells are presented on Figure 2, Site and Vicinity Sketch.

Soil Sampling

Four soil borings were advanced using a truck-mounted drilling rig. Soil samples were continuously collected and field-screened for relative VOC concentrations using a hand-held organic vapor meter (OVOM). Two soil samples were submitted from each boring for laboratory analysis. Soil boring logs are presented in Appendix C. At approximately twelve feet bgs a hard limestone was encountered preventing the collection of undisturbed samples. Soil samples were then collected from the soil cuttings. Boring B-1 was advanced by hydraulically pushing a split-spoon sampler until refusal was encountered. No auguring was performed at this sample point. Two hand-augur samples were collected inside the suite formerly occupied by Barton Howell Cleaners. These borings were positioned near the rear of the suite, where dry-cleaning equipment is typically located. The borings were positioned with the following rational:

- MW-1, outside the rear of the former dry-cleaning suite
- MW-2, outside the front of the former dry-cleaning suite
- MW-3, south side of Building 200, apparent downgradient position relative to the former dry-cleaning suite
- B-1, north side of Building 200, outside the former dry-cleaning suite
- HA-1 and HA-2, inside the former dry-cleaning suite. Borings were positioned in the rear work area of the suite.
The soil cuttings for the exterior borings were placed into clean, 55-gallon drums and stored on site pending disposal. Soil cuttings from the interior hand-augur borings were returned to the borings.

Prior to each boring the sampling equipment was decontaminated using a phosphate-free soap and rinsed with distilled water.

Groundwater Sampling

Three, two-inch diameter, EPA Type II groundwater monitoring wells were installed into the 20-foot soil borings used for the soil sampling activities. The soil boring logs and well completing diagrams are presented in Appendix C. Approximately 24 hours and again at 48 hours after well installation, the wells were gauged for the presence of groundwater. MW-3 had measurable groundwater after approximately 24 hours. MW-1 and MW-2 did not have measurable groundwater after approximately 24 and 48 hours. MW-3 was developed on December 21, 1999. The water column was gauged and a minimum of three well volumes was removed using a disposable polyvinyl chloride (PVC) bailer. The development water was placed into a clean, 55-gallon drum and stored on site pending disposal. On December 22, 1999, a groundwater sample was collected using a disposable PVC bailer.

4.0 LABORATORY RESULTS

All samples were placed in laboratory supplied glassware, placed on ice, and sent, via a commercial overnight delivery service, to DRI Analytical, Round Rock, Texas. All samples were analyzed for VOCs by EPA Method 8260. Laboratory analytical results are presented in Appendix D.

Soil

Acetone was detected at relative low concentrations in selected soil samples. Based on the relatively low concentrations, the detected acetone does not present an environmental concern. The soil laboratory analysis is summarized in the table below.

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Acetone Concentration*</th>
<th>Sample Identification</th>
<th>Acetone Concentration*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1 (2'-2)</td>
<td>106</td>
<td>MW-1 (10^-12)</td>
<td>ND</td>
</tr>
<tr>
<td>MW-2 (6'-2)</td>
<td>102</td>
<td>MW-2 (10^-12)</td>
<td>ND</td>
</tr>
<tr>
<td>MW-3 (1'-2)</td>
<td>101</td>
<td>MW-3 (10^-12)</td>
<td>ND</td>
</tr>
<tr>
<td>B-1 (4'-2)</td>
<td>152</td>
<td>B-1 (6'-8)</td>
<td>ND</td>
</tr>
<tr>
<td>HA-3</td>
<td>ND</td>
<td>HA-2</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Acetone reported in micrograms per kilogram (ug/kg) or parts per billion (ppb) equivalent.

ND = Not detected at the laboratory reporting limit

Groundwater

Tetrachloroethene (perchloroethene, PCE or PERC) was detected in the groundwater from MW-3 at a concentration of 33.3 micrograms per liter (ug/L) or parts per billion (ppb) equivalent. No other VOCs were detected in this sample above the laboratory reporting limit.

5.0 DISCUSSION OF RESULTS

It appears the subject property has been adversely impacted by PCE in the groundwater. The reportable concentration of PCE in the groundwater is five ug/L. The detected concentration appears to exceed the reportable quantity and would require notification to the TRRC, Texas Risk Reduction Standards, Standards Number 1 and 2, do not allow concentrations of PCE in the usable groundwater above five ug/L. If the impacted groundwater is not considered a current or potential source of drinking water, and the contaminated groundwater is not hydraulically connected with and is not likely to migrate to either surface water or to groundwater that is a current or potential source of drinking water, then the allowable PCE concentration is increased by a factor of 100 to 500 ug/L.

Given the current data, it appears the site may be eligible for closure under Risk Reduction Standard Number 3. Closure under this option would require the calculation of an Alternate Concentration Limit (ACL) based on risk to human health and environment. Conversations with TRRC representatives indicate the identified PCE impact needs to be delineated and possibly monitored for up to two years prior to site closure.

The minor acetone impact in the shallow soils is not considered to be of environmental significance. In the Texas Risk Reduction Standard Number 1, the MCL for acetone is 365,000 ug/kg for groundwater protection for residential land use. The detected acetone in the soils is well below the allowable MCL. Based on the low concentrations of acetone, WRC does not believe this to be of environmental significance and recommends no further assessment of this issue.

6.0 CONCLUSIONS AND RECOMMENDATIONS

WRC has completed a Phase II ESA at the Camelot Shopping Center located at 580 West Arapaho Road, Richardson, Dallas County, Texas. The results of this assessment indicate:

- Acetone was detected in selected shallow soil samples. The concentrations of acetone are relatively low and are not expected to present an environmental concern.
- PCE was detected at a concentration of 33.3 micrograms per liter in the groundwater located in an apparent downgradient position of the former dry-cleaning operations.

Based on the results of this assessment, WRC concludes the subject property has been adversely impacted above regulatory reporting limits by PCE. The source of the PCE has not been defined, but is most likely attributed to the former on-site dry-cleaning operations.

WRC recommends the extent of the PCE impact be defined. WRC also recommends legal consultation regarding the reporting requirements to the TRRC.
Photograph 1: Advancement of soil boring MW-1 located on the east side of the former on-site dry cleaners.

Photograph 2: Soil samples and cuttings from soil boring MW-1.
Photograph 3: View of groundwater monitoring well MW-1

Photograph 4: Advancement of soil boring MW-2 located on the west side of the former on-site dry cleaners.

Photograph 5: Soil samples and cuttings from soil boring MW-2.

Photograph 6: View of groundwater monitoring well MW-2.
Photograph 7: Advancement of soil boring MW-3 located on the south side of Building 200.

Photograph 8: Soil samples and cuttings from soil boring MW-3.

Photograph 9: View of groundwater monitoring well MW-3.

Photograph 10: View of soil samples from soil boring B-1.
Photograph 11: View of soil boring HA-1.

December 7, 1999

Mr. Norman Hoppenstein
Hoppenstein Properties
P.O. Box 796023
Dallas, Texas 75379-6023

Subject: Report of Phase I Environmental Site Assessment
Camelot Shopping Center
580 West Arapho Road
Richardson, Texas
White Rock Consulting Project No. 99-1105

Dear Mr. Hoppenstein,

White Rock Consulting, Inc. (WRC) is pleased to submit this report of our Phase I Environmental Site Assessment for the subject property. The purpose of our services was to assess the facility for known and potential environmental concerns. This report is prepared in general accordance with our proposal 99-1105, dated November 22, 1999.

This report is intended for the use of Hoppenstein Properties, Inc., only. Our services have been performed under mutually agreed upon terms and conditions. If other parties wish to rely on this report, please have them contact us so that a mutual understanding and agreement of the terms and conditions for our services can be established prior to their use of this information.

The findings contained herein are based upon the data, which was reviewed and documented in this report, along with our experience with similar projects. The discovery of any additional information concerning the environmental conditions at the site should be reported to us so that we can reassess potential environmental impacts and modify our findings, if necessary.

We appreciate the opportunity to be of service to you. Please call us if you have any questions or if we may be of further service.

Sincerely,

White Rock Consulting, Inc.

[Signatures]

Project Manager
Principal Engineer

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

1.0 BACKGROUND INFORMATION .. 1

2.0 PURPOSE, SCOPE OF WORK AND REPORT LIMITATIONS 2

3.0 ENVIRONMENTAL SETTING ... 4

4.0 HISTORICAL REVIEW .. 8

5.0 REGULATORY LISTED FACILITIES 12

6.0 SITE AND AREA RECONNAISSANCE 15

7.0 CONCLUSIONS AND RECOMMENDATIONS 15

APPENDICES

APPENDIX A - FIGURES
APPENDIX B - PHOTOGRAPHS
APPENDIX C - REGULATORY INFORMATION
EXECUTIVE SUMMARY

Hoppenstein Properties, Inc. (Hoppenstein), has engaged White Rock Consulting, Inc. (WRC), to perform a Phase I Environmental Site Assessment (ESA) of the Camelot Shopping Center located at 580 West Arapaho Road, Richardson, Dallas County, Texas. The shopping center consists of four separate, one-story buildings, totaling approximately 74,975 square feet of leasable space, located on approximately 6.4 acres. The buildings are currently occupied by 13 separate tenants involved with retail, restaurant, entertainment, cosmology and administrative operations. The property appears to have been undeveloped land prior to the construction of the shopping center in the late 1960s.

The Phase I ESA has been conducted in general accordance with the American Society for Testing and Materials (ASTM) E 1527-97. WRC has reviewed selected environmental regulatory lists, related historical and geological information, as well as information obtained during our site and area reconnaissance. A full discussion of our findings, conclusions, and recommendations is contained in the body of this report. A summary of these findings is presented below.

Based upon the information obtained to date, we believe there is evidence to support that the subject property may have been adversely impacted from historic dry cleaning practices. Barton Howell Cleaners occupied the subject property from approximately 1968 to 1974. Mr. Alvin Barton, former owner of Barton Howell Cleaners, reported dry cleaning operations were conducted on the subject property.

Two, 55-gallon drums labeled “OH EB 5000 CST” were observed on the north side of Building 100. These drums appeared to be abandoned with no apparent owner or responsible party.

Based on the results of this assessment, WRC recommends further assessment of the subject property, including soil and groundwater sampling. This additional assessment would be designed to assess the potential impact from historic, on-site, dry cleaning practices. WRC also recommends the characterization and proper disposal of the two abandoned 55-gallon drums located on the north side of Building 100.

This executive summary is presented for convenience only. While the executive summary is an integral part of the report, it should not be used in lieu of reading the entire report, including the appendices.

1.0 BACKGROUND INFORMATION

Hoppenstein Properties, Inc. (Hoppenstein), has engaged White Rock Consulting, Inc. (WRC), to perform a Phase I Environmental Site Assessment (ESA) of the Camelot Shopping Center located at 580 West Arapaho Road, Richardson, Dallas County, Texas. The shopping center consists of four separate, one-story buildings, totaling approximately 74,975 square feet of leasable space, located on approximately 6.4 acres. The buildings are currently occupied by 13 separate tenants involved with retail, restaurant, entertainment, cosmology, and administrative operations. The property appears to have been undeveloped land prior to the development of the shopping center in the late 1960s.

It is our understanding that Hoppenstein requires this Phase I ESA in consideration of purchasing the subject property. This assessment was performed substantially as outlined in WRC’s proposal 99.1105, dated November 22, 1999.

2.0 PURPOSE, SCOPE OF WORK AND REPORT LIMITATIONS

PURPOSE

The purpose of our Phase I ESA was to identify, recognize, and characterize environmental conditions and hazards that could affect the future use of the site. These conditions and hazards may include, but are not limited to, contamination of the subsurface soils and groundwater, and the potential for future impact on the environment.

SCOPE OF WORK

The Phase I ESA was performed to evaluate the potential environmental concerns associated with the subject property. This evaluation included the examination of site and area records, review of environmental data, and on-site inspection.

LIMITATIONS

The report is limited to the scope of work described herein. It does not encompass all possible hazards or conditions that may exist on the property. The report is not intended to be used as a basis for making decisions regarding the future use of the property.

This assessment included a review of available documents, public records, visual observations, and discussions with the property manager where appropriate. We understand that the primary interest of Hoppenstein in requesting this assessment is to locate and evaluate potential environmental conditions and hazards that may have a significant impact on the value of the property, prior to purchase.
SCOPE OF WORK

Phase I ESA

The Phase I ESA was performed in general accordance with the ASTM E 1527-97, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. Specifically, WRC performed the following:

- Reviewed available historical information.
- Contacted regulatory agencies for records regarding possible hazardous material handling, spills, storage, or production, at the site in its vicinity.
- Reviewed available information to characterize the general geology and hydrogeology of the site.
- Performed a site and area reconnaissance by a WRC representative.
- Performed a Limited Polychlorinated Biphenyl (PCB) Survey. The Limited PCB Survey will consist of a visual reconnaissance of major fluid type electrical devices for evidence of leakage and PCB status based on the presence or absence of labeling. No sampling or laboratory analysis of the dielectric fluids will be performed.

The Phase I ESA was not designed to assess the presence, degree, or extent of impact, if any, but rather the potential for impact.

REPORT LIMITATIONS

This Phase I ESA has been conducted with the due care as normally provided by professionals involved in projects of similar scope. This report does not claim to represent future site conditions or events. Situations or activities resulting in environmental impact occurring subsequent to the report date are not to be construed as relevant to this assessment.

All conclusions presented in this report are based on reasonably ascertainable information and are not submitted as scientific certainties. The intent of the Phase I ESA was to identify concerns which would be evident to an environmental professional and does not constitute exhaustive research into all potential hazards on-site or in the vicinity.

3.0 ENVIRONMENTAL SETTING

A consideration of surface and subsurface drainage and geology are of interest since they provide an indication of the flow direction of groundwater and the potential migration pattern of any contaminants present.

Geology and Hydrogeology

WRC reviewed the following information in regards to the geology and hydrogeology of the sites and surrounding areas:

WRC reviewed available sources of information in regard to the geology and hydrology of the subject property and surrounding area. The purpose of this review was to evaluate the sensitivity of the hydrogeology to potential contamination from sources either on or near the site. It was not the purpose of this study to evaluate the geotechnical conditions of the site, or to assess engineering geology concerns such as foundation conditions, faulting, or subsidence.

The subject property is situated in the Blackland Prairie physiographic province of Texas at an estimated elevation of approximately 635 to 645 feet above mean sea level. The terrain is characterized by gently undulating hills and flat plains. The topographic gradient of the subject property is directed downward to the south, toward an unnamed tributary of Cottonwood Creek, located approximately 200 feet south of the subject property.

The subject property is located on an outcrop area of the Upper Cretaceous Austin Chalk Formation. The thickness of the Austin Chalk varies from approximately 390 to 500 feet and dips to the east. Although this formation has relatively low matrix permeability, faults and fractures within the chalk may provide a conduit for lateral and vertical transmission of groundwater. The Austin Chalk outcrops in a wide, generally north-south oriented belt across Dallas, Denton and Collin Counties. It is underlain by the Upper Cretaceous Eagle Ford Shale Group. The Eagle Ford Shale is approximately 480 feet thick in the site vicinity. The Woodbine Sandstone Formation lies below the Eagle Ford Group and is considered a minor aquifer in the subject area.

One soil type, Houston Black-Urban land complex is mapped at the subject property. Houston Black-urban land complex is made up of deep, moderately well drained, nearly level and gently sloping soils and areas of Urban land. The Houston Black soil makes up about 40 percent of this complex, and Urban land, which consists of areas covered by buildings and pavement, makes up 25 percent. Minor soils make up the rest. The Houston Black soil and Urban land are so intermingled that it was not practical to separate them in mapping.

Typically, the surface layer of the Houston Black soil is a moderately alkaline, very dark gray clay, approximately six inches thick. The soil is a moderately alkaline, black clay from
approximately 6 to 38 inches below ground surface (bgs) and a moderately alkaline, very dark gray clay from approximately 38 to 52 inches bgs. The soil is a moderately alkaline, dark grayish brown clay that has light olive brown mottles from approximately 52 to 70 inches bgs. Permeability is very slow, and the available water capacity is high. Runoff is medium, and the hazard of erosion is moderate.

Urban land consists of extensively built-up areas where 75 percent or more of the surface is covered with buildings and pavement. The soils in these areas have been altered or covered during urban development; therefore it was not feasible to identify and separate them in mapping.

Groundwater from below the soil/bedrock interface is derived primarily from one major aquifer, the Lower Cretaceous Trinity Group, which has two main water-bearing units, the Paluxy and the Twin Mountains Formations. There is also a minor aquifer, the more shallow Upper Cretaceous Woodbine Formation. The Woodbine is classified as a minor aquifer based upon its irregular yield and water quality. General flow directions for groundwater in all of the above-mentioned aquifers parallel the geologic dip, down to the southeast.

Perched or shallow groundwater, when present, often flows in the same direction as the surface topography. No site-specific perched or shallow groundwater information was readily available for our review.

Surface Water

Surface water is directed via sheetflow to the adjacent streets. No drainage inlets were observed on the subject property.

4.0 HISTORICAL REVIEW

WRC reviewed the following available information to ascertain the historical uses of the site and immediately adjacent properties to evaluate the presence of activity of potential environmental concern:

Aerial photographs dated 1947 and 1958 from Agricultural Stabilization and Conservation Service, and 1973, 1984 and 1994 from Texas Department of Transportation. These aerial photographs were obtained through DKM Environmental Research in Austin, Texas.

Interview with Mr. Alan Brann, Property Manager, Yang Realty.

Interview with Mr. Charles Yang, Property Owner.

Interview with Mr. Alvin Burton, previous tenant of Cumhot Shopping Center.

Aerial Photographs

Aerial photographs of the site were reviewed for indications of industrial use of the property, presence of landfills, sandpits, or other areas of potential concern. Photographs were reviewed from the years 1947, 1958, 1973, 1984 and 1994.

The 1947 aerial photograph depicts the subject property as generally undeveloped land. A driveway bisects the subject property in a north-south direction. The driveway leads to a single-family residence located north of the subject property. Undeveloped land and a single-family residence are located adjacent to the east of the subject property. Arapaho Road borders the subject property to the south. Across Arapaho Road is undeveloped land, followed by a creek. Undeveloped land is located west of the subject property.

No significant changes were noted to the subject property or surrounding area to the north, east and south in the 1958 aerial photograph. West of the subject property is a small tract of undeveloped land, followed by a drive-in theater.

The 1973 aerial photograph depicts the subject property developed with its current four structures, as observed during our site reconnaissance. Rockingham Lane borders the subject property to the north, followed by an apartment complex. Undeveloped land is located east of northern portion of the eastern subject property boundary. Two small structures are located east of the southern portion of the eastern subject property boundary, along Arapaho Road. A building is located adjacent to the southwestern corner of the subject property, at the northeast corner of Arapaho Road and Hampshire Lane. South of the subject property, across Arapaho Road, are two small structures and one large structure. Hampshire Lane borders the subject property to the west. Across Hampshire Lane are three small buildings and associated parking areas. Further west is the drive-in theater.

The 1984 aerial photograph does not depict apparent significant changes to the subject property or to the surrounding property to the north, east or south. Additional office buildings are located west of the subject property. The drive-in theater previously described west of the subject property is no longer present.

No apparent significant changes were noted in the 1994 aerial photograph since the previous 1984 aerial photograph, with the exception of an additional structure located adjacent to the east of the subject property.

Based on review of aerial photographs, no apparent industrial uses, landfills, sandpits or other areas of potential environmental concern were observed.
City Directories Historical Review

City directories dated 1966, 1967*, 1968, 1974, 1978, 1982, 1983-85*, 1986-87, 1987-88*, 1988-89*, 1991-92, and 1998 were reviewed. The directories were reviewed at approximate five-year increments starting with the most current available. Where applicable, additional directories were reviewed, indicated by an asterisk (*), to further assess the length of time a tenant of potential environmental concern may have been located on the subject property. The subject property is located at 580 West Arapaho Road.

The 1964 city directory lists Arapaho ds Road. Addresses on Arapaho Road range from the 400 block to 531 and then continues from the 600 block. The subject property address and Camelot Shopping Center were not listed in the 1964 directory.

The 1968 city directory did not have a listing for the subject property address, 580 Arapaho Road. The directory did list the Camelot Shopping Center on Arapaho Road without a street number. Five tenants are listed as occupying the Camelot Shopping Center. One on-site tenant, Barton Howell Cleaners, did not have a suite number listed. Other tenants listed were A&P Supermarket, Skillern Drug, Wills of Camelot and Windsor Place Beauty Salon. Barton Howell Cleaners may present a potential environmental concern if dry-cleaning operations were performed on-site. The 1967 directory did not list Camelot Shopping Center or Barton Howell Cleaners on Arapaho Road.

The 1974 city directory lists Barton Howell Cleaners as a tenant, with no suite number. Other tenants of the shopping center listed are Val Mart, A&P Supermarket, Falk Fabric Outlet, Taylor Rental Center, Maternity Fashions, Camelot Floors and Interiors, Pauline's Sportswear, Jetties Agency, Import & Gift Shop, Dressing Room and Parts Cameras.

Barton Howell Cleaners was not listed in the 1978 city directory. Tenants of Camelot Shopping Center listed in this directory were Sears Roebuck, Big Lou's, Radio Shack, Blue Hawaiian, Ducky Bob's, Unstained Furniture, Affordable Furniture, Hsin Hsin Grocery, Richardson Shoe Outlet, Texas Amusement Games, Richardson Lockbox, Windsor Place Beauty Salon, Fashon Consultant, Sads and Scissors Grooming, Marko Polo Imports, Presidents Health Club, Kentucky Fried Chicken, Golden Star Donut, Dace and Dace, Dixie Lehn Insurance, Gappy's Townsend, and Century 21 Realtors.

Tenants of Camelot Shopping Center listed in the 1982 city directory are Liquid Assets, Dragon Restaurant, Margaritaville, Ducky Bob's, Unstained Furniture, Affordable Furniture, Hsin Hsin Grocery, Richardson Shoe Outlet, Texas Amusement Games, Richardson Lockbox, Windsor Place Beauty Salon, Fashion Consultant, Sads and Scissors Grooming, Marko Polo Imports, Presidents Health Club, Kentucky Fried Chicken, Golden Star Donut, Dace and Dace, Dixie Lehn Insurance, Gappy's Townsend, and Century 21 Realtors.

The 1986-87 city directory listed the following as tenants at the Camelot Shopping Center: Camelot Mall, AM Vets Post 71, Cloth World, Unstained Furniture, Central Computer Repair.
Interviews

Mr. Alan Brann, Property Manager with Yang Realty, was unaware of the history of the site, prior to the current development. Mr. Brann was unaware of potential environmental concerns associated with the subject property.

Mr. Charles Yang, current property owner, reported he purchased the subject property in 1983. He stated that he is not aware of the history of the site prior to 1983. Mr. Yang reported that Floyd Cleaners occupied the subject property from approximately 1984 to 1986 as a drop-off location only and that dry cleaning operations were not performed on-site. Mr. Yang was not aware of the presence of Barton Howell Cleaners at the subject property during the 1960s and 1970s. Mr. Yang was unaware of potential environmental concerns associated with the subject property. Floyd Cleaners does not appear to present an environmental concern based on not reportedly performing dry-cleaning operations on-site.

WRC was able to locate Mr. Alvin Barton, the former owner of Barton Howell Cleaners. Mr. Barton reported that he owned a dry cleaning facility located in the Camellot Shopping Center from approximately 1968 to 1974 or 1975. He further stated that dry cleaning operations were performed on-site. Barton Howell Cleaners was reported to be located in the current location of Suite 208, at the north end of Building 200. Perchloroethylene (PCE) was a common dry-cleaning fluid during the time dry-cleaning operations were conducted on-site. PCE is known as a chlorinated solvent, and through WRC’s experience with similar projects, has a history of adversely impacting soils and groundwater during the dry cleaning operation. The reported on-site dry-cleaning operation presents an environmental concern to the subject property.

5.0 REGULATORY LISTED FACILITIES

WRC conducted a review of selected regulatory lists published by the state and federal regulatory agencies to determine if the site or nearby properties are listed as having a past or present record of actual or potential environmental impact, or are under investigation for an environmental impact. The lists were provided by Environmental Data Resources, Inc. (EDR), Southport, Connecticut. Note that regulatory listings are limited and include only those sites which are known to the regulatory agencies, at the time of publication, to be contaminated or in the process of evaluation or subject to monitoring for potential contamination. The following summarizes findings of the lists reviewed. Please note that the distances and directions contained in this report are based on WRC’s field verification of the listed facilities and may differ from those reported by EDR. A full listing of researched databases with appropriate tables and accompanying maps are located in Appendix C.

EPA National Priorities Lists (NPL)

The Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) established the National Priorities List (NPL) of Federal "Superfund" sites. These are contaminated sites that have been assigned a high ranking, in terms of potential public health effects, by the EPA.

- The site does not appear on the NPL list, dated July 22, 1999.
- There are no facilities listed on the NPL within a one-mile radius of the site.

EPA Comprehensive Environmental Response, Compensation, and Liability Act Information System (CERCLIS)

The CERCLIS lists and identifies suspected contamination sites throughout Texas; however, a facility or site on this list does not necessarily have environmental problems.

- The site does not appear on the CERCLIS list, dated August 26, 1999.
- There are no facilities listed within a one-half mile radius on the CERCLIS list.

EPA Corrective Action Report (CORRACTS)

The Corrective Action Report (CORRACTS) identifies waste handlers with RCRA corrective action activity.

- The site does not appear on the CORRACTS list, dated March 1, 1999.
- There are no facilities listed within a one-half mile radius on the CORRACTS list.

EPA Resource Conservation & Recovery Information System (RCRIS)

RCRIS includes select information on sites which generate, store, treat and/or dispose hazardous wastes defined on the Resource Conservation and Recovery Act (RCRA).

- The site does not appear on the RCRIS list, dated August 1, 1999.
- There were no facilities listed adjacent to the subject property on the RCRIS list.
- There are no facilities listed on the RCRIS Treatment, Storage or Disposal (TSD) list within a one-half radius of the site.

Emergency Response Notification System (ERNS)

The ERNS database records and stores information on reported releases of oil and hazardous substances.

- The site does not appear on the ERNS list, dated August 5, 1999.
State Hazardous Wastes Sites (HWS)

Texas State Superfund Report hazardous waste site records are the state's equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent to Superfund) are identified along with sites where cleanup will be paid by potentially responsible parties.

- There are no facilities listed within a one-half mile radius on the Texas State Superfund Report list.

TNRCC Petroleum Storage Tank List (PST)

The PST database contains a comprehensive inventory of all registered aboveground and underground active, and inactive storage tanks in Texas. Underground storage tanks (USTs) are regulated under Subtitle I of the RCRA and must be registered with the TNRCC.

- The site does not appear on the PST list, dated October 1, 1999.
- There are two facilities listed adjacent to the subject property on the PST list. Vista 4021 (Fina), 555 W. Arapaho Road, is located adjacent to the south, across Arapaho Road. The Fina station appears to be topographically (inferred hydrologically) downstream of the subject property. This facility is listed as having four, fiberglass reinforced plastic, 8,000-gallon USTs, which were installed in 1982. The USTs are listed as currently active. Three of the tanks are described as containing gasoline and the fourth contains diesel. The tanks are described as single walk, with automatic in-tank monitoring and inventory control. Three of the tanks are described as being equipped with Stage 2 vapor recovery equipment. This facility is also listed on the LUST list and is further discussed below.

Arapaho Car Wash, 535 W. Arapaho Road, is located adjacent to the south, across Arapaho Road. The Arapaho Car Wash appears to be topographically (inferred hydrologically) downstream of the subject property. This facility is listed as having two, steel, 6,000-gallon USTs, which were installed in 1968 and one, steel, 3,000-gallon UST, which was installed in 1980. The USTs are listed as currently active. Two of the tanks are listed as containing gasoline, and the third as containing diesel. Tank and line protection was not reported. This facility is also listed on the LUST list and is further discussed below.

TNRCC Leaking Underground Storage Tank List (LUST)

The LUST database contains a comprehensive inventory of all reported active and inactive leaking aboveground and underground storage tank incidents within Texas.

- The site does not appear on the LUST list, dated October 1, 1999.
- There are three facilities listed within one-half mile of the subject property on the LUST list. The first facility, Vista 4021 (Fina gas station), 555 W. Arapaho Road, is located adjacent to the south of the subject property, across Arapaho Road. This facility appears to be topographically (inferred hydrologically) downstream of the subject property. Vista 4021 is listed as having a discovery date of October 6, 1998 with groundwater impacted and no apparent threats to receptors. The status is listed as incident reported, initial directives not yet issued. Based on the inferred hydrologic relation, and identification of a potential responsible party (PRP), this facility is not expected to present a potential environmental concern to the subject property.

Arapaho Car Wash, 535 W. Arapaho Road, is located adjacent to the south of the subject property, across Arapaho Road. This facility appears to be topographically (inferred hydrologically) downstream of the subject property. Arapaho Car Wash is listed as having a discovery date of January 9, 1992 with groundwater impacted and no apparent threats to receptors. The status is listed as final concurrence pending documentation of well plugging. Based on the inferred hydrologic relation and case status, this facility is not expected to present a potential environmental concern.

Former Mobil Service Station #12-FLY, 507 W. Arapaho Road, is located approximately 1,400 feet east and topographically separated from the subject property by an unnamed tributary of Cottonwood Creek. Mobil is listed as having a discovery date of July 24, 1989, with groundwater impact, public domestic water supply well within 0.25 miles. The status of the facility is listed as final concurrence issued, case closed. Based on the topographic relation and case status, this facility is not expected to present a potential environmental concern.

Solid Waste Facilities/Landfill Sites (SWFLF)

The SWFLF list typically contains an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Section 3004 criteria for solid waste landfills or disposal sites.

- The site does not appear on the SWFLF list, dated September 1, 1999.
- There are no facilities listed within a one-half mile radius on the SWFLF list.

Local Agency Inquiries

A Freedom of Information Act (FOIA) request was forwarded to the Richardson Health Department for records associated with the subject property. The City of Richardson's response to FOIA requests include a search of fire and health department files. No response has been received at the time of this report. When the response is received, WRC will prepare an addendum to this report if an environmental concern is identified, and modify our conclusions and recommendations if necessary.
6.0 SITE AND AREA RECONNAISSANCE

Ms. Anne Hobbs of WRC conducted a site and area reconnaissance on November 30, 1999. Mr. Alan Benn, property manager, accompanied WRC during the site reconnaissance. The location of the site is provided in Figure 1, and a site and vicinity sketch is provided as Figure 2.

SITE RECONNAISSANCE

The site reconnaissance was performed to observe any obvious visual indications of present or past activities, which have, or could have caused an environmental impact to the site. The site reconnaissance was conducted on foot.

Property Description

The site is located at the northeast corner of Arapaho Road and Hampshire Lane with a street address of 580 West Arapaho Road, Richardson, Dallas County, Texas. The site consists of a generally rectangular shaped, 6.4-acre tract of land.

The site is developed with four single-story retail buildings. The buildings reportedly total 74,975 square feet net leasable space. The parking area is paved. The buildings are occupied by 13 separate tenants involved with retail, restaurant, entertainment, and service operations. The individual tenants and type of operation are summarized below:

<table>
<thead>
<tr>
<th>Address</th>
<th>Suite</th>
<th>Tenant</th>
<th>Type Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>580</td>
<td>100</td>
<td>Bingo</td>
<td>Bingo Parlor with snack bar</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>Vacant</td>
<td>Former restaurant</td>
</tr>
<tr>
<td></td>
<td>134</td>
<td>Babe's</td>
<td>Bar and restaurant</td>
</tr>
<tr>
<td></td>
<td>136</td>
<td>USA World Enterprise</td>
<td>Computer retail sales and repair</td>
</tr>
<tr>
<td></td>
<td>154</td>
<td>Sports Distributors</td>
<td>Sports uniform and equipment sales</td>
</tr>
<tr>
<td></td>
<td>163</td>
<td>The Conservatory of Classical Ballet</td>
<td>Ballet studio</td>
</tr>
<tr>
<td></td>
<td>181</td>
<td>Ron Rick's</td>
<td>Repair of video games</td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>USA World Enterprises</td>
<td>Storage of computers</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>Hsin Hsin Groceny</td>
<td>Grocery store and take out food</td>
</tr>
<tr>
<td></td>
<td>218</td>
<td>Vacant</td>
<td>Former photo studio</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>Vacant</td>
<td>Former dog groomer</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>Pirouette Specialties</td>
<td>Seamstresses</td>
</tr>
<tr>
<td></td>
<td>241</td>
<td>Camelot Hair Stylists</td>
<td>Hair salon</td>
</tr>
<tr>
<td></td>
<td>262</td>
<td>Guarnieri Violin Shop</td>
<td>Sales and repair of violins</td>
</tr>
<tr>
<td></td>
<td>271</td>
<td>Acupuncture</td>
<td>Acupuncture and herbs</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>Vacant</td>
<td>Former health club/gym</td>
</tr>
<tr>
<td></td>
<td>307</td>
<td>Zak's</td>
<td>Donut shop</td>
</tr>
</tbody>
</table>

Underground and Aboveground Storage Tanks

No evidence of underground or aboveground storage tanks was observed during WRC's site reconnaissance. No underground or aboveground storage tanks were reported to be present at the subject property.

Hazardous Materials

Hazardous materials typically consisted of household type cleaners in the various suites. Tenants with hazardous or regulated materials are summarized in the table below:

<table>
<thead>
<tr>
<th>Suite</th>
<th>Tenant Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>Vacant – former health club</td>
<td>Three, 55-gallon drums labeled "hard soap, two 5-gallon cans paint, one 1-gallon can paint thinner"</td>
</tr>
<tr>
<td>262</td>
<td>Guarnieri Violin Shop</td>
<td>Two, one-gallon Xylene</td>
</tr>
<tr>
<td>181</td>
<td>Ron Rick's</td>
<td>2 pints Kelo, 1 pint paint remover, spray paint</td>
</tr>
</tbody>
</table>

Due to the vacant status of Suite 280, WRC recommends the proper disposal of the items abandoned in this suite.

The small quantity of Xylene observed at Suite 262 is reportedly used in the refinishing and repair of violins. Xylene is consumed in the process and reportedly does not require disposal.

Ron Rick's utilizes small quantity of spray paint and paint remover in his operations of repairing video games, juke boxes and soft drink machines. These items are consumed in use with no reported wastes generated.

Two, 55-gallon drums were observed on the north side of Building 100. One drum was observed at the rear entry of Suite 134, Babes. The second drum was observed at the rear entry of Suite 130, Vacant. The drums were labeled “01 EB 5000 CS1” and distributed by Huls America, Inc. A label on the drum indicated the drums contained silicones and siloxanes, dimethyl, hydroxy-terminated cyclic siloxane. The ownership of the drums was not identified. The top of one of the drums was extensively rusted; indicating it has been exposed to the elements for a significant amount of time. WRC recommends the contents of the drums be characterized and the drums be properly disposed.

The rear porch area and surrounding asphalt pavement near the drum outside Suite 134 was stained. However, the stains appear to be indicative of dirty mop water being disposed and possibly cooking grease. The staining does not appear to present a current environmental concern. WRC does recommend that housekeeping issues be discussed with the tenants of Suite 134, Babes.

Solid Waste

Solid waste generated typically consists of domestic and restaurant type refuse. Four dumpsters were observed on the subject property. No unusual staining or odors were noted.
associated with the dumpsters. The dumpsters are serviced on a regular basis by the City of Richardson. Three of the restaurant facilities are reportedly equipped with grease traps. The grease traps are reportedly serviced on a regular basis.

PCB Electrical Transformers

Electrical transformers are a potential source of environmental concern due to the presence of polychlorinated biphenyls (PCBs) containing cooling oils used in some units. Typically the owning utility is responsible for the maintenance of their devices and the cleanup of spills or leaks from the units.

One pad-mounted and twenty-one pole-mounted transformers were observed on the subject property. The transformers were not observed to be leaking and there was no apparent staining on the ground below the transformers. The transformers were not labeled with regards to PCB content. TU Electric, the owning utility, in a letter dated November 3, 1994, advises that TU Electric classifies oil-filled electric equipment in accordance with applicable federal regulations (40 CFR part 761). Equipment manufactured prior to January 1, 1980, and is untested by an EPA approved method, will be classified as PCB contaminated (50-499 ppm). Equipment manufactured after January 1, 1980, will be classified as non-PCB (less than 50 ppm). TU Electric states that in an event of a spill or release of dielectric fluid or other substances, TU Electric will meet or exceed all state and federal requirements in the areas of response, notification, clean-up, disposal and documentation of the event. Based on TU Electric's ownership, and written acceptance for a release, the electrical transformers are not expected to present an environmental concern. Please note that TU Electric has recently changed names and is now known as TXU Electric.

Water Supply

Mr. Alan Bann, property manager with Yang Realty, stated the City of Richardson supplies potable water to the subject property.

Wastewater

Mr. Bann reported the City of Richardson provides sanitary sewer service to the subject property.

AREA RECONNAISSANCE

The area reconnaissance was performed to assist in evaluating if adjacent land uses have or possess the potential to have contaminated the site. The area reconnaissance was conducted by touring the area by automobile and viewing particular land uses from public rights-of-way and by walking observations at selected properties.

The majority of surrounding land uses are residential, retail and commercial. Findings of our area reconnaissance are discussed according to the geographic relation to the site: north, east, south and west.

North

Rockingham Lane borders the subject property to the north. Across Rockingham Road is an apartment complex.

East

Undeveloped land and a Auto Zone (auto parts store) is located east of the subject property.

South

A vacant building formerly occupied by an auto parts store is located adjacent to the southwest of the subject property. Arapaho Road borders the subject property to the south. Across Arapaho Road are a Fina Service Station, a full service car wash and a strip shopping center.

West

Hampshire Lane borders the subject property to the west. Across Hampshire Lane are small office buildings. The office buildings are occupied by a dentist, a dog groomer, a tax service and executive suites.

7.0 CONCLUSIONS AND RECOMMENDATIONS

WRC has completed its Phase I ESA of the Camelot Shopping Center located at 580 West Arapaho Road, Richardson, Dallas County, Texas. Based on review of readily available information, observations conducted on-site and in the near vicinity, WRC's findings are as follows:

Based upon the information obtained to date, we believe there is evidence to support that the subject property may have been adversely impacted from historic dry cleaning practices. Burton Howell Cleaners occupied the subject property from approximately 1968 to 1974. Mr. Alvin Barton, former owner of Burton Howell Cleaners, reported dry cleaning operations were conducted on the subject property.

Two, 55-gallon drums labeled “OHEB 5000 CSF” were observed on the north side of Building 100. These drums appeared to be abandoned with no apparent owner or responsible party.

Based on the results of this assessment, WRC recommends further assessment of the subject property, including soil and groundwater sampling. This additional assessment would be
designed to assess the potential impact from historic, on-site, dry cleaning practices. WRC also recommends the characterization and proper disposal of the two abandoned 55-gallon drums located on the north side of Building 100.
Photograph 3: View of the subject property, Building 400. View is to the southwest.

Photograph 4: Fina is located to the south of the subject property, across Arapaho Road. View is to the south.

Camelot Shopping Center-Richardson, Texas
WRC Project No. 99-1105